Matrix Operations for Image Processing

博客围绕图像相关处理展开,涉及矩阵、颜色变换及组件处理等信息技术内容,虽未给出具体内容,但可推测是关于图像处理方面的探讨。

Matrix Operations for Image Processing

Paul Haeberli

Nov 1993

Horiz Bar

Introduction

Four by four matrices are commonly used to transform geometry for 3D rendering. These matrices may also be used to transform RGB colors, to scale RGB colors, and to control hue, saturation and contrast. The most important advantage of using matrices is that any number of color transformations can be composed using standard matrix multiplication.

Please note that for these operations to be correct, we really must operate on linear brightness values. If the input image is in a non-linear brightness space RGB colors must be transformed into a linear space before these matrix operations are used.

Color Transformation

RGB colors are transformed by a four by four matrix as shown here:
    xformrgb(mat,r,g,b,tr,tg,tb)
    float mat[4][4];
    float r,g,b;
    float *tr,*tg,*tb;
    {
        *tr = r*mat[0][0] + g*mat[1][0] +
		    b*mat[2][0] + mat[3][0];
        *tg = r*mat[0][1] + g*mat[1][1] +
		    b*mat[2][1] + mat[3][1];
        *tb = r*mat[0][2] + g*mat[1][2] +
		    b*mat[2][2] + mat[3][2];
    }

The Identity

This is the identity matrix:
    float mat[4][4] = {
        1.0,    0.0,    0.0,    0.0,
        0.0,    1.0,    0.0,    0.0,
        0.0,    0.0,    1.0,    0.0,
        0.0,    0.0,    0.0,    1.0,
    };
Transforming colors by the identity matrix will leave them unchanged.

Changing Brightness

To scale RGB colors a matrix like this is used:
    float mat[4][4] = {
        rscale, 0.0,    0.0,    0.0,
        0.0,    gscale, 0.0,    0.0,
        0.0,    0.0,    bscale, 0.0,
        0.0,    0.0,    0.0,    1.0,
    };
Where rscale, gscale, and bscale specify how much to scale the r, g, and b components of colors. This can be used to alter the color balance of an image.

In effect, this calculates:

	tr = r*rscale;
	tg = g*gscale;
	tb = b*bscale;

Modifying Saturation

Converting to Luminance

To convert a color image into a black and white image, this matrix is used:
    float mat[4][4] = {
        rwgt,   rwgt,   rwgt,   0.0,
        gwgt,   gwgt,   gwgt,   0.0,
        bwgt,   bwgt,   bwgt,   0.0,
        0.0,    0.0,    0.0,    1.0,
    };
Where rwgt is 0.3086, gwgt is 0.6094, and bwgt is 0.0820. This is the luminance vector. Notice here that we do not use the standard NTSC weights of 0.299, 0.587, and 0.114. The NTSC weights are only applicable to RGB colors in a gamma 2.2 color space. For linear RGB colors the values above are better.

In effect, this calculates:

	tr = r*rwgt + g*gwgt + b*bwgt;
	tg = r*rwgt + g*gwgt + b*bwgt;
	tb = r*rwgt + g*gwgt + b*bwgt;

Modifying Saturation

To saturate RGB colors, this matrix is used:
     float mat[4][4] = {
        a,      b,      c,      0.0,
        d,      e,      f,      0.0,
        g,      h,      i,      0.0,
        0.0,    0.0,    0.0,    1.0,
    };
Where the constants are derived from the saturation value s as shown below:
    a = (1.0-s)*rwgt + s;
    b = (1.0-s)*rwgt;
    c = (1.0-s)*rwgt;
    d = (1.0-s)*gwgt;
    e = (1.0-s)*gwgt + s;
    f = (1.0-s)*gwgt;
    g = (1.0-s)*bwgt;
    h = (1.0-s)*bwgt;
    i = (1.0-s)*bwgt + s;
One nice property of this saturation matrix is that the luminance of input RGB colors is maintained. This matrix can also be used to complement the colors in an image by specifying a saturation value of -1.0.

Notice that when s is set to 0.0, the matrix is exactly the "convert to luminance" matrix described above. When s is set to 1.0 the matrix becomes the identity. All saturation matrices can be derived by interpolating between or extrapolating beyond these two matrices.

This is discussed in more detail in the note on Image Processing By Interpolation and Extrapolation.

Applying Offsets to Color Components

To offset the r, g, and b components of colors in an image this matrix is used:
    float mat[4][4] = {
        1.0,    0.0,    0.0,    0.0,
        0.0,    1.0,    0.0,    0.0,
        0.0,    0.0,    1.0,    0.0,
        roffset,goffset,boffset,1.0,
    };
This can be used along with color scaling to alter the contrast of RGB images.

Simple Hue Rotation

To rotate the hue, we perform a 3D rotation of RGB colors about the diagonal vector [1.0 1.0 1.0]. The transformation matrix is derived as shown here:

If we have functions:

identmat(mat)
that creates an identity matrix.
xrotatemat(mat,rsin,rcos)
that multiplies a matrix that rotates about the x (red) axis.
yrotatemat(mat,rsin,rcos)
that multiplies a matrix that rotates about the y (green) axis.
zrotatemat(mat,rsin,rcos)
that multiplies a matrix that rotates about the z (blue) axis.
Then a matrix that rotates about the 1.0,1.0,1.0 diagonal can be constructed like this:
First we make an identity matrix
    identmat(mat);
Rotate the grey vector into positive Z
    mag = sqrt(2.0);
    xrs = 1.0/mag;
    xrc = 1.0/mag;
    xrotatemat(mat,xrs,xrc);

    mag = sqrt(3.0);
    yrs = -1.0/mag;
    yrc = sqrt(2.0)/mag;
    yrotatemat(mat,yrs,yrc);
Rotate the hue
    zrs = sin(rot*PI/180.0);
    zrc = cos(rot*PI/180.0);
    zrotatemat(mat,zrs,zrc);
Rotate the grey vector back into place
    yrotatemat(mat,-yrs,yrc);
    xrotatemat(mat,-xrs,xrc);
The resulting matrix will rotate the hue of the input RGB colors. A rotation of 120.0 degrees will exactly map Red into Green, Green into Blue and Blue into Red. This transformation has one problem, however, the luminance of the input colors is not preserved. This can be fixed with the following refinement:

Hue Rotation While Preserving Luminance

We make an identity matrix
   identmat(mmat);
Rotate the grey vector into positive Z
    mag = sqrt(2.0);
    xrs = 1.0/mag;
    xrc = 1.0/mag;
    xrotatemat(mmat,xrs,xrc);
    mag = sqrt(3.0);
    yrs = -1.0/mag;
    yrc = sqrt(2.0)/mag;
    yrotatemat(mmat,yrs,yrc);
    matrixmult(mmat,mat,mat);
Shear the space to make the luminance plane horizontal
    xformrgb(mmat,rwgt,gwgt,bwgt,&lx,&ly,&lz);
    zsx = lx/lz;
    zsy = ly/lz;
    zshearmat(mat,zsx,zsy);
Rotate the hue
    zrs = sin(rot*PI/180.0);
    zrc = cos(rot*PI/180.0);
    zrotatemat(mat,zrs,zrc);
Unshear the space to put the luminance plane back
    zshearmat(mat,-zsx,-zsy);
Rotate the grey vector back into place
    yrotatemat(mat,-yrs,yrc);
    xrotatemat(mat,-xrs,xrc);

Conclusion

I've presented several matrix transformations that may be applied to RGB colors. Each color transformation is represented by a 4 by 4 matrix, similar to matrices commonly used to transform 3D geometry.

Example C code that demonstrates these concepts is provided for your enjoyment.

These transformations allow us to adjust image contrast, brightness, hue and saturation individually. In addition, color matrix transformations concatenate in a way similar to geometric transformations. Any sequence of operations can be combined into a single matrix using matrix multiplication.


数据集介绍:电力线目标检测数据集 一、基础信息 数据集名称:电力线目标检测数据集 图片数量: 训练集:2898张图片 验证集:263张图片 测试集:138张图片 总计:3299张图片 分类类别: 类别ID: 0(电力线) 标注格式: YOLO格式,包含对象标注信息,适用于目标检测任务。 数据格式:JPEG/PNG图片,来源于空中拍摄或监控视觉。 二、适用场景 电力设施监控与巡检: 数据集支持目标检测任务,帮助构建能够自动识别和定位电力线的AI模型,用于无人机或固定摄像头巡检,提升电力设施维护效率和安全性。 能源与公用事业管理: 集成至能源管理系统中,提供实时电力线检测功能,辅助进行风险 assessment 和预防性维护,优化能源分配。 计算机视觉算法研究: 支持目标检测技术在特定领域的应用研究,促进AI在能源和公用事业行业的创新与发展。 专业培训与教育: 数据集可用于电力行业培训课程,作为工程师和技术人员学习电力线检测与识别的重要资源。 三、数据集优势 标注精准可靠: 每张图片均经过专业标注,确保电力线对象的定位准确,适用于高精度模型训练。 数据多样性丰富: 包含多种环境下的电力线图片,如空中视角,覆盖不同场景条件,提升模型的泛化能力和鲁棒性。 任务适配性强: 标注格式兼容YOLO等主流深度学习框架,便于快速集成和模型开发,支持目标检测任务的直接应用。 实用价值突出: 专注于电力线检测,为智能电网、自动化巡检和能源设施监控提供关键数据支撑,具有较高的行业应用价值。
【弹簧阻尼器】基于卡尔曼滤波弹簧质量阻尼器系统噪声测量实时状态估计研究(Matlab代码实现)内容概要:本文围绕“基于卡尔曼滤波的弹簧质量阻尼器系统噪声测量与实时状态估计”展开研究,利用Matlab代码实现对系统状态的精确估计。重点在于应用卡尔曼滤波技术处理系统中存在的噪声干扰,提升对弹簧质量阻尼器系统动态行为的实时观测能力。文中详细阐述了系统建模、噪声特性分析及卡尔曼滤波算法的设计与实现过程,展示了滤波算法在抑制测量噪声、提高状态估计精度方面的有效性。同时,该研究属于更广泛的信号处理与状态估计技术应用范畴,适用于复杂动态系统的监控与控制。; 适合人群:具备一定控制系统理论基础和Matlab编程经验的高校研究生、科研人员及工程技术人员,尤其适合从事动态系统建模、状态估计与滤波算法研究的相关人员。; 使用场景及目标:①应用于机械、航空航天、自动化等领域中对振动系统状态的高精度实时估计;②为噪声环境下的传感器数据融合与状态预测提供算法支持;③作为卡尔曼滤波算法在实际物理系统中应用的教学与科研案例。; 阅读建议:建议读者结合Matlab代码实践,深入理解系统建模与滤波器设计的关键步骤,关注噪声建模与滤波参数调优对估计性能的影响,并可进一步拓展至扩展卡尔曼滤波(EKF)或无迹卡尔曼滤波(UKF)在非线性系统中的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值