Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
public class Solution {
public int minimumTotal(ArrayList<ArrayList<Integer>> triangle) {
// Start typing your Java solution below
// DO NOT write main() function
ArrayList<Integer> current = triangle.get(triangle.size()-1);
if (triangle.size() == 1){
return current.get(0);
}
Map<String, Integer> cache = new HashMap<String, Integer>();
int min = current.get(0) + calculate(triangle, triangle.size()-2, 0, cache);
for (int i=1 ; i<=current.size()-2 ; i++) {
int up = current.get(i) + calculate(triangle, triangle.size()-2, i-1, cache);
if (up < min)
min = up;
up = current.get(i) + calculate(triangle, triangle.size()-2, i, cache);
if (up < min)
min = up;
}
int up = current.get(current.size()-1) + calculate(triangle, triangle.size()-2, current.size()-2, cache);
if (up < min)
min = up;
return min;
}
private int calculate(ArrayList<ArrayList<Integer>> triangle, int listIndex, int numIndex, Map<String, Integer> cache) {
ArrayList<Integer> current = triangle.get(listIndex);
if (listIndex == 0){
return current.get(0);
}
if (numIndex == 0){
int resultTmp = calculate(triangle, listIndex-1, 0, cache);
cache.put((listIndex-1) + "--" + 0, resultTmp);
return current.get(0) + resultTmp;
}
if (numIndex == current.size()-1) {
return current.get(current.size()-1) + cache.get((listIndex-1) + "--" + (current.size()-2));
}
int upLeft = current.get(numIndex) + cache.get((listIndex-1) + "--" + (numIndex-1));
int rightResultTmp = calculate(triangle, listIndex-1, numIndex, cache);
int upRight = current.get(numIndex) + rightResultTmp;
cache.put((listIndex-1) + "--" + numIndex, rightResultTmp);
return (upLeft<upRight) ? upLeft : upRight;
}
}