机器学习的学习准则(期望风险最小化、经验风险最小化、结构风险最小化)

文章讨论了机器学习中评估模型性能的期望风险、经验风险及其关系。期望风险无法直接计算,因为真实分布未知,而经验风险是基于训练集的平均损失。当训练样本有限时,过拟合可能发生,为此引入了结构风险最小化,结合正则化防止模型过度拟合。

训练集是有N个独立同分布的样本组成,即每个样本(x,y)是独立的从相同的分布中抽取的。这个真实的分布p_{r}(x, y)未知

输入空间X和输出空间Y构成样本空间,对于样本空间中的样本(x, y)∈X x Y,假定x和y之间可通过一个未知的真实隐射y=g(x)来描述,或者通过真实条件概率分布p_{r}(y|\textbf{x})来描述。

1 期望风险

要评价模型f(x, θ)的好坏,可通过期望风险R(θ)来衡量:

 R(\theta ) = E_{(\textbf{x},y)\sim p_{r}(y|\textbf{x})}[L(y, f(\textbf{x};\theta))]

回顾一下数学期望的含义,

期望E[X]的含义是随机变量x与概率密度函数f(x)相乘以后的积分

期望E[g(X)]的含义是随机变量的函数g(x)与概率密度函数f(x)相乘以后的积分

现在求R(θ),即损失函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值