The Mountain of Gold? UVALive - 6800

本文介绍了一种用于检测是否存在从起点出发并回到起点的负权回路的算法。通过多次松弛操作,确保了能够发现图中可能存在的负权回路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://cn.vjudge.net/problem/UVALive-6800

题意:
问是否有从0出发并且回到0的负环

假如没有负环每个点最多被松弛n次
所以直接对每条边松弛n次
再看能不能松弛
可以的话就说明存在这样的负环

#include <iostream>
#include <algorithm>
#include <sstream>
#include <string>
#include <queue>
#include <cstdio>
#include <map>
#include <set>
#include <utility>
#include <stack>
#include <cstring>
#include <cmath>
#include <vector>
#include <ctime>
#include <bitset>
using namespace std;
#define pb push_back
#define sd(n) scanf("%d",&n)
#define sdd(n,m) scanf("%d%d",&n,&m)
#define sddd(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define sld(n) scanf("%lld",&n)
#define sldd(n,m) scanf("%lld%lld",&n,&m)
#define slddd(n,m,k) scanf("%lld%lld%lld",&n,&m,&k)
#define sf(n) scanf("%lf",&n)
#define sff(n,m) scanf("%lf%lf",&n,&m)
#define sfff(n,m,k) scanf("%lf%lf%lf",&n,&m,&k)
#define ss(str) scanf("%s",str)
#define ansn() printf("%d\n",ans)
#define lansn() printf("%lld\n",ans)
#define r0(i,n) for(int i=0;i<(n);++i)
#define r1(i,e) for(int i=1;i<=e;++i)
#define rn(i,e) for(int i=e;i>=1;--i)
#define mst(abc,bca) memset(abc,bca,sizeof abc)
#define lowbit(a) (a&(-a))
#define all(a) a.begin(),a.end()
#define pii pair<int,int>
#define pll pair<long long,long long>
#define mp(aa,bb) make_pair(aa,bb)
#define lrt rt<<1
#define rrt rt<<1|1
#define X first
#define Y second
#define PI (acos(-1.0))
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const ll mod = 1000000007 ;
const double eps=1e-9;
const int inf=0x3f3f3f3f;
//const ll infl = 100000000000000000;//1e17
const int maxn=  2e3+20;
const int maxm = 3e2+20;
//muv[i]=(p-(p/i))*muv[p%i]%p;
int in(int &ret) {
    char c;
    int sgn ;
    if(c=getchar(),c==EOF)return -1;
    while(c!='-'&&(c<'0'||c>'9'))c=getchar();
    sgn = (c=='-')?-1:1;
    ret = (c=='-')?0:(c-'0');
    while(c=getchar(),c>='0'&&c<='9')ret = ret*10+(c-'0');
    ret *=sgn;
    return 1;
}

int dp[maxn];
bool vis[maxn];
vector<pii>g[maxn];
int a[maxn],b[maxn],c[maxn];
int dis[maxn];
bool dfs(int u) {
    if(u==0)return 1;
    if(vis[u])return dp[u];
    vis[u] = 1;
    int sz = g[u].size();
    r0(i,sz) {
        int v = g[u][i].X;
        if(dfs(v))return dp[u] = 1;
    }
    return dp[u] = 0;
}
int main() {
#ifdef LOCAL
    freopen("input.txt","r",stdin);
//    freopen("output.txt","w",stdout);
#endif // LOCAL
    int t;
    sd(t);
    r1(cas,t) {
        printf("Case #%d: ",cas);
        int n,m;
        sdd(n,m);
        r0(i,n)g[i].clear(),vis[i] = 0,dis[i] = inf,dp[i] = 0;
        r1(i,m) {
            int u,v,w;
            sddd(u,v,w);
            a[i] = u,b[i] = v,c[i] = w;;
            g[u].pb(mp(v,w));
        }
        dis[0] = 0;
        r0(i,n) {
            r1(j,m) {
                int u = a[j],v = b[j],w = c[j];
                if(dis[v]>dis[u]+w) {
                    dis[v] = dis[u] + w;
                }
            }
        }
        bool ok = 0;
        for(int i=1; i<=m&&!ok; ++i) {
            int u = a[i],v = b[i];
            if(dis[v]>dis[u] + c[i]) {
                if(dfs(u))ok = 1;
            }
        }
        puts(ok?"possible":"not possible");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值