1、Pandas数据结构
-
2008年WesMcKinney开发出的库
-
专门用于数据挖掘的开源python库
-
以Numpy为基础,借力Numpy模块在计算方面性能高的优势
-
基于matplotlib,能够简便的画图
-
独特的数据结构
1.1 为什么使用Pandas
Numpy已经能够帮助我们处理数据,能够结合matplotlib解决部分数据展示等问题,那么pandas学习的目的在什么地方呢?
-
(1)增强图表可读性
-
在numpy当中创建学生成绩表样式:
-
返回结果:
array([[92, 55, 78, 50, 50], [71, 76, 50, 48, 96], [45, 84, 78, 51, 68], [81, 91, 56, 54, 76], [86, 66, 77, 67, 95], [46, 86, 56, 61, 99], [46, 95, 44, 46, 56], [80, 50, 45, 65, 57], [41, 93, 90, 41, 97], [65, 83, 57, 57, 40]])
如果数据展示为这样,可读性就会更友好:
-
(2)便捷的数据处理能力
-
(3)读取文件方便
-
(4)封装了Matplotlib、Numpy的画图和计算
1.2 Pandas数据结构
Pandas中一共有三种数据结构,分别为:Series、DataFrame和MultiIndex(老版本中叫Panel )。
其中Series是一维数据结构,DataFrame是二维的表格型数据结构,MultiIndex是三维的数据结构。
1.2.1 Series
Series是一个类似于一维数组的数据结构,它能够保存任何类型的数据,比如整数、字符串、浮点数等,主要由一组数据和与之相关的索引两部分构成。
(1)Series的创建
# 导入pandas import pandas as pd pd.Series(data=None, index=None, dtype=None)
-
参数:
-
data:传入的数据,可以是ndarray、list等
-
index:索引,必须是唯一的,且与数据的长度相等。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
-
dtype:数据的类型
通过已有数据创建:
- (1)指定内容,默认索引:
pd.Series(np.arange(10))
# 运行结果 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 dtype: int64
- (2)指定索引:
pd.Series([6.7,5.6,3,10,2], index=[1,2,3,4,5])
# 运行结果 1 6.7 2 5.6 3 3.0 4 10.0 5 2.0 dtype: float64
- (3)通过字典数据创建
color_count = pd.Series({'red':100, 'blue':200, 'green': 500, 'yellow':1000}) color_count
# 运行结果 blue 200 green 500 red 100 yellow 1000 dtype: int64
(2)Series的属性
为了更方便地操作Series对象中的索引和数据,Series中提供了两个属性index和values:
- index:
color_count = pd.Series({'red':100, 'blue':200, 'green': 500, 'yellow':1000}) color_count.index # 结果 Index(['blue', 'green', 'red', 'yellow'], dtype='object')
- values:
color_count.values # 结果 array([ 200, 500, 100, 1000])
也可以使用索引来获取数据:
color_count[2] # 结果 100
1.2.2 DataFrame
DataFrame是一个类似于二维数组或表格(如excel)的对象,既有行索引,又有列索引:
-
行索引,表明不同行,横向索引,叫index,0轴,axis=0
-
列索引,表名不同列,纵向索引,叫columns,1轴,axis=1
(1)DataFrame的创建
# 导入pandas import pandas as pd pd.DataFrame(data=None, index=None, columns=None)
-
参数:
-
index:行标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
-
columns:列标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
-
通过已有数据创建
举例一:
pd.DataFrame(np.random.randn(2,3))
结果:
举例二:创建学生成绩表
使用np创建的数组显示方式,比较两者的区别。
# 生成10名同学,5门功课的数据 score = np.random.randint(40, 100, (10, 5))#均匀分布 # 结果 array([[92, 55, 78, 50, 50], [71, 76, 50, 48, 96], [45, 84, 78, 51, 68], [81, 91, 56, 54, 76], [86, 66, 77, 67, 95], [46, 86, 56, 61, 99], [46, 95, 44, 46, 56], [80, 50, 45, 65, 57], [41, 93, 90, 41, 97], [65, 83, 57, 57, 40]])
但是这样的数据形式很难看到存储的是什么的样的数据,可读性比较差!!
问题:如何让数据更有意义的显示?
# 使用Pandas中的数据结构 score_df = pd.DataFrame(score)
结果:
给分数数据增加行列索引,显示效果更佳:
- 增加行、列索引:
# 构造行索引序列 subjects = ["语文", "数学", "英语", "政治", "体育"] # 构造列索引序列 stu = ['同学' + str(i) for i in range(score_df.shape[0])] # 添加行索引 data = pd.DataFrame(score, columns=subjects, index=stu)
结果:
(2)DataFrame的属性
- (1)shape
data.shape # 结果 (10, 5)
- (2)index
DataFrame的行索引列表
data.index # 结果 Index(['同学0', '同学1', '同学2', '同学3', '同学4', '同学5', '同学6', '同学7', '同学8', '同学9'], dtype='object')
- (3)columns
DataFrame的列索引列表
data.columns # 结果 Index(['语文', '数学', '英语', '政治', '体育'], dtype='object')
- (4)values
直接获取其中array的值
array([[54, 82, 62, 81, 47], [50, 58, 73, 72, 48], [88, 89, 49, 99, 83], [79, 81, 69, 45, 87], [87, 64, 62, 74, 85], [68, 56, 58, 77, 53], [77, 49, 82, 48, 82], [96, 49, 67, 94, 71], [98, 77, 44, 99, 41], [71, 52, 74, 90, 44]])
- (5)T
转置
data.T
结果:
- (6)head(5):显示前5行内容
如果不补充参数,默认5行。填入参数N则显示前N行
data.head(5)
结果:
- (7)tail(5):显示后5行内容
如果不补充参数,默认5行。填入参数N则显示后N行
data.tail(5)
结果:
(3)DatatFrame索引的设置
现在要将下图的行索引改变,变成下下图所示样子,怎么做呢?
- (1)修改行列索引值
stu = ["学同学_" + str(i) for i in range(score_df.shape[0])] # 必须整体全部修改 data.index = stu
注意:以下修改方式是错误的,说明不能单独修改
# 错误修改方式,不能单个修改 data.index[3] = '学生_3'
-
(2)重设索引
-
设置新的下标索引
-
drop:默认为False,不删除原来索引,如果为True,删除原来的索引值
-
reset_index(drop=False)
# 重置索引,drop=False data.reset_index()
结果:
# 重置索引,drop=True data.reset_index()
结果:
-
(3)以某列值设置为新的索引
-
set_index(keys, drop=True)
-
keys : 列索引名成或者列索引名称的列表
-
drop : boolean, default True.当做新的索引,删除原来的列
设置新索引案例:
1、创建
df = pd.DataFrame({'month': [1, 4, 7, 10], 'year': [2012, 2014, 2013, 2014], 'sale':[55, 40, 84, 31]}) month sale year 0 1 55 2012 1 4 40 2014 2 7 84 2013 3 10 31 2014
2、以月份设置新的索引
df.set_index('month') sale year month 1 55 2012 4 40 2014 7 84 2013 10 31 2014
3、设置多个索引,以年和月份
df = df.set_index(['year', 'month']) df sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31
注:通过刚才的设置,这样DataFrame就变成了一个具有MultiIndex的DataFrame。
1.2.3 MultiIndex与Panel
(1)MultiIndex
MultiIndex是三维的数据结构;
多级索引(也称层次化索引)是pandas的重要功能,可以在Series、DataFrame对象上拥有2个以及2个以上的索引。
- (1)multiIndex的特性
打印刚才的df的行索引结果
df sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 df.index MultiIndex(levels=[[2012, 2013, 2014], [1, 4, 7, 10]], labels=[[0, 2, 1, 2], [0, 1, 2, 3]], names=['year', 'month'])
多级或分层索引对象。
-
index属性
-
names:levels的名称
-
levels:每个level的元组值
df.index.names # FrozenList(['year', 'month']) df.index.levels # FrozenList([[2012, 2013, 2014], [1, 4, 7, 10]])
- (2)multiIndex的创建
arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) # 结果 MultiIndex(levels=[[1, 2], ['blue', 'red']], codes=[[0, 0, 1, 1], [1, 0, 1, 0]], names=['number', 'color'])
(2)Panel
-
(1)panel的创建
-
作用:存储3维数组的Panel结构
-
参数:
-
data : ndarray或者dataframe
-
items : 索引或类似数组的对象,axis=0
-
major_axis : 索引或类似数组的对象,axis=1
-
minor_axis : 索引或类似数组的对象,axis=2
-
class pandas.Panel(data=None, items=None, major_axis=None, minor_axis=None)
p = pd.Panel(data=np.arange(24).reshape(4,3,2), items=list('ABCD'), major_axis=pd.date_range('20130101', periods=3), minor_axis=['first', 'second']) # 结果 <class 'pandas.core.panel.Panel'> Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis) Items axis: A to D Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00 Minor_axis axis: first to second
- (2)查看panel数据
p[:,:,"first"] p["B",:,:]
注:Pandas从版本0.20.0开始弃用:推荐的用于表示3D数据的方法是通过DataFrame上的MultiIndex方法。
2、基本数据操作
为了更好的理解这些基本操作,我们将读取一个真实的股票数据。关于文件操作,后面在介绍,这里只先用一下API。
# 读取文件 data = pd.read_csv("./data/stock_day.csv") # 删除一些列,让数据更简单些,再去做后面的操作 data = data.drop(["ma5","ma10","ma20","v_ma5","v_ma10","v_ma20"], axis=1)
2.1 索引操作
Numpy当中我们已经讲过使用索引选取序列和切片选择,pandas也支持类似的操作,也可以直接使用列名、行名称,甚至组合使用。
2.2.1 直接使用行列索引(先列后行)
获取’2018-02-27’这天的’open’的结果:
# 直接使用行列索引名字的方式(先列后行) data['open']['2018-02-27'] 23.53 # 不支持的操作 # 错误 data['2018-02-27']['open'] # 错误 data[:1, :2]
2.2.2 结合loc或者iloc使用索引
获取从’2018-02-27’到’2018-02-22’,'open’的结果:
# 使用loc:只能指定行列索引的名字 data.loc['2018-02-27':'2018-02-22', 'open'] 2018-02-27 23.53 2018-02-26 22.80 2018-02-23 22.88 Name: open, dtype: float64 # 使用iloc可以通过索引的下标去获取 # 获取前3天数据,前5列的结果 data.iloc[:3, :5] open high close low 2018-02-27 23.53 25.88 24.16 23.53 2018-02-26 22.80 23.78 23.53 22.80 2018-02-23 22.88 23.37 22.82 22.71
2.2.3 使用ix组合索引(混合索引:下标和名称)
获取行第1天到第4天,[‘open’, ‘close’, ‘high’, ‘low’]这个四个指标的结果:
# 使用ix进行下表和名称组合做引 data.ix[0:4, ['open', 'close', 'high', 'low']] # 推荐使用loc和iloc来获取的方式 data.loc[data.index[0:4], ['open', 'close', 'high', 'low']] data.iloc[0:4, data.columns.get_indexer(['open', 'close', 'high', 'low'])] open close high low 2018-02-27 23.53 24.16 25.88 23.53 2018-02-26 22.80 23.53 23.78 22.80 2018-02-23 22.88 22.82 23.37 22.71 2018-02-22 22.25 22.28 22.76 22.02
2.2 赋值操作
对DataFrame当中的close列进行重新赋值为1。
# 直接修改原来的值 data['close'] = 1 # 这一列都变成1 # 或者 data.close = 1
2.3 排序
排序有两种形式,一种对于索引进行排序,一种对于内容进行排序:
2.3.1 DataFrame排序
-
(1)使用
df.sort_values(by=, ascending=)
-
by:指定排序参考的键
-
ascending:默认升序
-
ascending=False:降序
-
ascending=True:升序
-
单个键或者多个键进行排序,
-
参数:
如下:
例一:
# 按照开盘价大小进行排序 , 使用ascending指定按照大小排序 data.sort_values(by="open", ascending=True).head()
结果:
例二:
# 按照多个键进行排序 data.sort_values(by=['open', 'high'])
结果:
- (2)使用
df.sort_index(ascending=)
给索引进行排序
这个股票的日期索引原来是从大到小,现在重新排序,从小到大:
# 对索引进行排序 data.sort_index()
结果:
2.3.2 Series排序
- (1)使用
series.sort_values(ascending=True)
进行排序
series排序时,只有一列,不需要参数
data['p_change'].sort_values(ascending=True).head() 2015-09-01 -10.03 2015-09-14 -10.02 2016-01-11 -10.02 2015-07-15 -10.02 2015-08-26 -10.01 Name: p_change, dtype: float64
- (2)使用
series.sort_index()
进行排序
与df一致
# 对索引进行排序 data['p_change'].sort_index().head() 2015-03-02 2.62 2015-03-03 1.44 2015-03-04 1.57 2015-03-05 2.02 2015-03-06 8.51 Name: p_change, dtype: float64
2.4 总结
3、DataFrame运算
3.1 算术运算
- (1)
add(other)
比如进行数学运算加上具体的一个数字
data['open'].head().add(1) 2018-02-27 24.53 2018-02-26 23.80 2018-02-23 23.88 2018-02-22 23.25 2018-02-14 22.49 Name: open, dtype: float64
- (2)
sub(other)
整个列减一个数
data.open.head().sub(2) 2018-02-27 21.53 2018-02-26 20.80 2018-02-23 20.88 2018-02-22 20.25 2018-02-14 19.49 Name: open, dtype: float64
3.2 逻辑运算
3.2.1 逻辑运算符号
-
例如筛选data[“open”] > 23的日期数据
-
data[“open”] > 23返回逻辑结果
data["open"] > 23 2018-02-27 True 2018-02-26 False 2018-02-23 False 2018-02-22 False 2018-02-14 False
# 逻辑判断的结果可以作为筛选的依据 data[data["open"] > 23].head()
结果:
- 完成多个逻辑判断:
data[(data["open"] > 23) & (data["open"] < 24)].head()
3.2.2 逻辑运算函数
-
(1)
query(expr)
-
expr:查询字符串
通过query使得刚才的过程更加方便简单,下面是使用的例子:
data.query("open<24 & open>23").head()
结果:
- (2)
isin(values)
例如判断’open’是否为23.53和23.85:
# 可以指定值进行一个判断,从而进行筛选操作 data[data["open"].isin([23.53, 23.85])]
3.2.3 统计运算
(1)describe
综合分析: 能够直接得出很多统计结果,count, mean, std, min, max 等
# 计算平均值、标准差、最大值、最小值 data.describe()
(2)统计函数
看一下min(最小值)
, max(最大值)
, mean(平均值)
, median(中位数)
, var(方差)
, std(标准差)
,mode(众数)
是怎么操作的:
对于单个函数去进行统计的时候,坐标轴还是按照默认列“columns” (axis=0, default),如果要对行“index” 需要指定(axis=1)。
- (1)
max()、min()
# 使用统计函数:0 代表列求结果, 1 代表行求统计结果 data.max(axis=0) # 最大值 open 34.99 high 36.35 close 35.21 low 34.01 volume 501915.41 price_change 3.03 p_change 10.03 turnover 12.56 my_price_change 3.41 dtype: float64
- (2)
std()、var()
# 方差 data.var(axis=0) open 1.545255e+01 high 1.662665e+01 close 1.554572e+01 low 1.437902e+01 volume 5.458124e+09 price_change 8.072595e-01 p_change 1.664394e+01 turnover 4.323800e+00 my_price_change 6.409037e-01 dtype: float64 # 标准差 data.std(axis=0) open 3.930973 high 4.077578 close 3.942806 low 3.791968 volume 73879.119354 price_change 0.898476 p_change 4.079698 turnover 2.079375 my_price_change 0.800565 dtype: float64
- (3)
median()
:中位数
中位数为将数据从小到大排列,在最中间的那个数为中位数。如果没有中间数,取中间两个数的平均值。
data.median(axis=0) open 21.44 high 21.97 close 10.00 low 20.98 volume 83175.93 price_change 0.05 p_change 0.26 turnover 2.50 dtype: float64
- (4)
idxmax()、idxmin()
# 求出最大值的位置 data.idxmax(axis=0) open 2015-06-15 high 2015-06-10 close 2015-06-12 low 2015-06-12 volume 2017-10-26 price_change 2015-06-09 p_change 2015-08-28 turnover 2017-10-26 my_price_change 2015-07-10 dtype: object # 求出最小值的位置 data.idxmin(axis=0) open 2015-03-02 high 2015-03-02 close 2015-09-02 low 2015-03-02 volume 2016-07-06 price_change 2015-06-15 p_change 2015-09-01 turnover 2016-07-06 my_price_change 2015-06-15 dtype: object
(3)累计统计函数
那么这些累计统计函数怎么用?
以上这些函数可以对series和dataframe操作,这里我们按照时间的从前往后来进行累计
- 排序
# 排序之后,进行累计求和 data = data.sort_index()
- 对p_change进行求和
stock_rise = data['p_change'] stock_rise.cumsum() 2015-03-02 2.62 2015-03-03 4.06 2015-03-04 5.63 2015-03-05 7.65 2015-03-06 16.16 2015-03-09 16.37 2015-03-10 18.75 2015-03-11 16.36 2015-03-12 15.03 2015-03-13 17.58 2015-03-16 20.34 2015-03-17 22.42 2015-03-18 23.28 2015-03-19 23.74 2015-03-20 23.48 2015-03-23 23.74
那么如何让这个连续求和的结果更好的显示呢?
如果要使用plot函数,需要导入matplotlib.下面是绘图代码:
import matplotlib.pyplot as plt # plot显示图形, plot方法集成了直方图、条形图、饼图、折线图 stock_rise.cumsum().plot() # 需要调用show,才能显示出结果 plt.show()
结果:
关于plot,稍后会介绍API的选择。
(4)自定义运算
-
apply(func, axis=0)
-
func:自定义函数
-
axis=0:默认是列,axis=1为行进行运算
-
定义一个对列,最大值-最小值的函数
下面看个例子:
data[['open', 'close']].apply(lambda x: x.max() - x.min(), axis=0) open 22.74 close 22.85 dtype: float64
特定需求需要用这个。
4、Pandas画图
4.1 pandas.DataFrame.plot
-
DataFrame.plot(kind='line')
-
‘line’ : 折线图
-
‘bar’ : 条形图
-
‘barh’ : 横放的条形图
-
‘hist’ : 直方图
-
‘pie’ : 饼图
-
‘scatter’ : 散点图
-
kind : str,需要绘制图形的种类
关于“barh”的解释:
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.barh.html
更多细节:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html?highlight=plot#pandas.DataFrame.plot
看个例子:
import matplotlib.pyplot as plt # plot显示图形, plot方法集成了直方图、条形图、饼图、折线图 stock_rise.cumsum().plot(kind="line") # 需要调用show,才能显示出结果 plt.show()
结果:
4.2 pandas.Series.plot
更多细节:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.plot.html?highlight=plot#pandas.Series.plot
注:使用的时候查看。
5、文件读取与存储
我们的数据大部分存在于文件当中,所以pandas会支持复杂的IO操作,pandas的API支持众多的文件格式,如CSV、SQL、XLS、JSON、HDF5。
注:最常用的HDF5和CSV文件
接下来重点看一下,应用CSV方式、HDF方式和json方式实现文件的读取和存储。
5.1 CSV
5.1.1 read_csv
-
pandas.read_csv(filepath_or_buffer, sep =',', usecols )
-
filepath_or_buffer:文件路径
-
sep :分隔符,默认用","隔开
-
usecols:指定读取的列名,列表形式
举例:读取之前的股票的数据:
# 读取文件,并且指定只获取'open', 'close'指标 data = pd.read_csv("./data/stock_day.csv", usecols=['open', 'close']) open close 2018-02-27 23.53 24.16 2018-02-26 22.80 23.53 2018-02-23 22.88 22.82 2018-02-22 22.25 22.28 2018-02-14 21.49 21.92
5.1.2 to_csv
-
DataFrame.to_csv(path_or_buf=None, sep=', ’, columns=None, header=True, index=True, mode='w', encoding=None)
-
path_or_buf :文件路径
-
sep :分隔符,默认用","隔开
-
columns :选择需要的列索引
-
header :boolean or list of string, default True,是否写进列索引值
-
index:是否写进行索引
-
mode:‘w’:重写, ‘a’ 追加
举例:保存读取出来的股票数据
保存’open’列的数据,然后读取查看结果:
# 选取10行数据保存,便于观察数据 data[:10].to_csv("./data/test.csv", columns=['open']) # 读取,查看结果 pd.read_csv("./data/test.csv") Unnamed: 0 open 0 2018-02-27 23.53 1 2018-02-26 22.80 2 2018-02-23 22.88 3 2018-02-22 22.25 4 2018-02-14 21.49 5 2018-02-13 21.40 6 2018-02-12 20.70 7 2018-02-09 21.20 8 2018-02-08 21.79 9 2018-02-07 22.69
会发现将索引存入到文件当中,变成单独的一列数据。如果需要删除,可以指定index参数,删除原来的文件,重新保存一次。
下面例子把index指定为False,那么保存的时候就不会保存行索引了:
# index:存储不会将索引值变成一列数据 data[:10].to_csv("./data/test.csv", columns=['open'], index=False)
当然我们也可以这么做,就是把索引保存到文件中,读取的时候变成了一列,那么可以把这个列再变成索引,如下:
# 把Unnamed: 0这一列,变成行索引 open.set_index(["Unnamed: 0"]) # 把索引名字变成index open.index.name = "index"
5.2 HDF5
5.2.1 read_hdf与to_hdf
HDF5文件的读取和存储需要指定一个键,值为要存储的DataFrame
-
(1)
pandas.read_hdf(path_or_buf,key =None,** kwargs)
-
path_or_buffer:文件路径
-
key:读取的键
-
return:Theselected object
-
(2)
DataFrame.to_hdf(path_or_buf, key, **kwargs)
5.2.2 案例
- 读取文件
day_close = pd.read_hdf("./data/day_close.h5")
如果读取的时候出现以下错误
需要安装安装tables模块避免不能读取HDF5文件
pip install tables
- 存储文件
day_close.to_hdf("./data/test.h5", key="day_close")
再次读取的时候, 需要指定键的名字
new_close = pd.read_hdf("./data/test.h5", key="day_close")
注意:优先选择使用HDF5文件存储
-
HDF5在存储的时候支持压缩,使用的方式是blosc,这个是速度最快的也是pandas默认支持的
-
使用压缩可以提磁盘利用率,节省空间
-
HDF5还是跨平台的,可以轻松迁移到hadoop 上面
5.3 JSON
JSON是我们常用的一种数据交换格式,在前后端的交互经常用到,也会在存储的时候选择这种格式。所以我们需要知道Pandas如何进行读取和存储JSON格式。
5.3.1 read_json
-
pandas.read_json(path_or_buf=None, orient=None, typ='frame', lines=False)
-
按照每行读取json对象
-
(1)‘split’ : dict like {index -> [index], columns -> [columns], data -> [values]}
-
(2)‘records’ : list like [{column -> value}, … , {column -> value}]
-
(3)‘index’ : dict like {index -> {column -> value}}
-
(4)‘columns’ : dict like {column -> {index -> value}},默认该格式
-
(5)‘values’ : just the values array
-
split 将索引总结到索引,列名到列名,数据到数据。将三部分都分开了
-
records 以columns:values的形式输出
-
index 以index:{columns:values}…的形式输出
-
colums 以columns:{index:values}的形式输出
-
values 直接输出值
-
path_or_buf
: 路径 -
orient
: string,以什么样的格式显示.下面是5种格式: -
lines
: boolean, default False -
typ
: default ‘frame’, 指定转换成的对象类型series或者dataframe
案例:
- 数据介绍:
这里使用一个新闻标题讽刺数据集,格式为json。is_sarcastic:1讽刺的,否则为0;headline:新闻报道的标题;article_link:链接到原始新闻文章。存储格式为:
{"article_link": "https://www.huffingtonpost.com/entry/versace-black-code_us_5861fbefe4b0de3a08f600d5", "headline": "former versace store clerk sues over secret 'black code' for minority shoppers", "is_sarcastic": 0} {"article_link": "https://www.huffingtonpost.com/entry/roseanne-revival-review_us_5ab3a497e4b054d118e04365", "headline": "the 'roseanne' revival catches up to our thorny political mood, for better and worse", "is_sarcastic": 0}
- 读取
orient指定存储的json格式,lines指定按照行去变成一个样本:
json_read = pd.read_json("./data/Sarcasm_Headlines_Dataset.json", orient="records", lines=True)
结果为:
5.3.2 to_json
-
DataFrame.to_json(path_or_buf=None, orient=None, lines=False)
-
将Pandas 对象存储为json格式
-
path_or_buf=None:文件地址
-
orient:存储的json形式,{‘split’,’records’,’index’,’columns’,’values’}
-
lines:一个对象存储为一行
案例:
- 存储文件
# 不指定lines=Treu,则保存成一行 json_read.to_json("./data/test.json", orient='records')
结果:
[{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/versace-black-code_us_5861fbefe4b0de3a08f600d5","headline":"former versace store clerk sues over secret 'black code' for minority shoppers","is_sarcastic":0},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/roseanne-revival-review_us_5ab3a497e4b054d118e04365","headline":"the 'roseanne' revival catches up to our thorny political mood, for better and worse","is_sarcastic":0},{"article_link":"https:\/\/local.theonion.com\/mom-starting-to-fear-son-s-web-series-closest-thing-she-1819576697","headline":"mom starting to fear son's web series closest thing she will have to grandchild","is_sarcastic":1},{"article_link":"https:\/\/politics.theonion.com\/boehner-just-wants-wife-to-listen-not-come-up-with-alt-1819574302","headline":"boehner just wants wife to listen, not come up with alternative debt-reduction ideas","is_sarcastic":1},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/jk-rowling-wishes-snape-happy-birthday_us_569117c4e4b0cad15e64fdcb","headline":"j.k. rowling wishes snape happy birthday in the most magical way","is_sarcastic":0},{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/advancing-the-worlds-women_b_6810038.html","headline":"advancing the world's women","is_sarcastic":0},....]
- 修改
lines
参数为True
# 指定lines=True,则多行存储 json_read.to_json("./data/test.json", orient='records', lines=True)
结果:
{"article_link":"https:\/\/www.huffingtonpost.com\/entry\/versace-black-code_us_5861fbefe4b0de3a08f600d5","headline":"former versace store clerk sues over secret 'black code' for minority shoppers","is_sarcastic":0} {"article_link":"https:\/\/www.huffingtonpost.com\/entry\/roseanne-revival-review_us_5ab3a497e4b054d118e04365","headline":"the 'roseanne' revival catches up to our thorny political mood, for better and worse","is_sarcastic":0} {"article_link":"https:\/\/local.theonion.com\/mom-starting-to-fear-son-s-web-series-closest-thing-she-1819576697","headline":"mom starting to fear son's web series closest thing she will have to grandchild","is_sarcastic":1} {"article_link":"https:\/\/politics.theonion.com\/boehner-just-wants-wife-to-listen-not-come-up-with-alt-1819574302","headline":"boehner just wants wife to listen, not come up with alternative debt-reduction ideas","is_sarcastic":1} {"article_link":"https:\/\/www.huffingtonpost.com\/entry\/jk-rowling-wishes-snape-happy-birthday_us_569117c4e4b0cad15e64fdcb","headline":"j.k. rowling wishes snape happy birthday in the most magical way","is_sarcastic":0}...
6、高级处理-缺失值处理
在pandas中,缺失值使用NaN来标记,如下图所示:
6.1 如何处理nan
按如下步骤进行:
-
(1)获取缺失值的标记方式(NaN或者其他标记方式)
-
(2)如果缺失值的标记方式是NaN
-
1、删除存在缺失值的:
dropna(axis='rows')
注:不会修改原数据,需要接受返回值 -
2、替换缺失值:
fillna(value, inplace=True)
-
value:替换成的值
-
inplace:True:会修改原数据,False:不替换修改原数据,生成新的对象
-
pd.isnull(df),
-
pd.notnull(df)
-
判断数据中是否包含NaN:
-
存在缺失值nan:
-
(3)如果缺失值没有使用NaN标记,比如使用"?"
-
先替换‘?’为np.nan,然后继续处理
步骤就是上面的这样,下面通过例子来看看怎么使用pandas处理的:
6.2 电影数据的缺失值处理
- 电影数据文件获取
# 读取电影数据 movie = pd.read_csv("./data/IMDB-Movie-Data.csv")
6.2.1 判断缺失值是否存在
# 判断是否是缺失值,是则返回False pd.notnull(movie) # 结果: Rank Title Genre Description Director Actors Year Runtime (Minutes) Rating Votes Revenue (Millions) Metascore 0 True True True True True True True True True True True True 1 True True True True True True True True True True True True 2 True True True True True True True True True True True True 3 True True True True True True True True True True True True 4 True True True True True True True True True True True True 5 True True True True True True True True True True True True 6 True True True True True True True True True True True True 7 True True True True True True True True True True False True
但是上面这样显然不好观察,我们可以借助np.all()
来返回是否有缺失值。np.all()
只要有一个就返回False,下面看例子:
np.all(pd.notnull(movie)) # 返回 False
# 判断是否是缺失值,是则返回True pd.isnull(movie).head() # 结果: Rank Title Genre Description Director Actors Year Runtime (Minutes) Rating Votes Revenue (Millions) Metascore 0 False False False False False False False False False False False False 1 False False False False False False False False False False False False 2 False False False False False False False False False False False False 3 False False False False False False False False False False False False 4 False False False False False False False False False False False False
这个也不好观察,我们利用np.any()
来判断是否有缺失值,若有则返回True,下面看例子:
np.any(pd.isnull(movie)) # 返回 True
6.2.2 存在缺失值nan,并且是np.nan
- 1、删除
pandas删除缺失值,使用dropna的前提是,缺失值的类型必须是np.nan
# 不修改原数据 movie.dropna() # 可以定义新的变量接受或者用原来的变量名 data = movie.dropna()
- 2、替换缺失值
# 替换存在缺失值的样本的两列 # 替换填充平均值,中位数 movie['Revenue (Millions)'].fillna(movie['Revenue (Millions)'].mean(), inplace=True)
替换所有缺失值:
# 这个循环,每次取出一列数据,然后用均值来填充 for i in movie.columns: if np.all(pd.notnull(movie[i])) == False: print(i) movie[i].fillna(movie[i].mean(), inplace=True)
6.2.3 不是缺失值nan,有默认标记的
直接看例子:
数据是这样的:
# 读入数据 wis = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data")
以上数据在读取时,可能会报如下错误:
URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:833)>
解决办法:
# 全局取消证书验证 import ssl ssl._create_default_https_context = ssl._create_unverified_context
处理思路分析:
-
1、先替换‘?’为np.nan
-
to_replace:替换前的值
-
value:替换后的值
-
df.replace(to_replace=, value=)
# 把一些其它值标记的缺失值,替换成np.nan wis = wis.replace(to_replace='?', value=np.nan)
- 2、再进行缺失值的处理
# 删除 wis = wis.dropna()
- 3、验证:
np.all(pd.notnull(wis)) # 返回True,说明没有了缺失值 # 或者 np.any(pd.isnull(wis)) # 返回False,说明没有了缺失值
7、高级处理-数据离散化
7.1 为什么要离散化
连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作为数据挖掘的工具。
7.2 什么是数据的离散化
连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值。
离散化有很多种方法,这里使用一种最简单的方式去操作:
-
原始人的身高数据:165,174,160,180,159,163,192,184
-
假设按照身高分几个区间段:150~165, 165180,180195
这样我们将数据分到了三个区间段,对应的标记为矮、中、高三个类别,最终要处理成一个"哑变量"矩阵。
下面通过股票数据的例子来看看,具体是怎么操作的。
7.3 股票的涨跌幅离散化
我们对股票每日的"p_change"这一列进行离散化,下图便是离散化后的结果,当前数据存在哪个区间,则这个区间标记为1,否则为0。
那具体怎么做的呢?接着看:
7.3.1 读取股票的数据
先读取股票的数据,筛选出p_change数据。
data = pd.read_csv("./data/stock_day.csv") p_change= data['p_change']
7.3.2 将股票涨跌幅数据进行分组
下面是所在区间的个数。
使用的工具:
-
pd.qcut(data, q)
: -
对数据进行分组,将数据分成q组,一般会与
value_counts
搭配使用,统计每组的个数 -
series.value_counts()
:统计每个分组中有多少数据。
# 自行分组 qcut = pd.qcut(p_change, 10) # 计算分到每个组数据个数 qcut.value_counts() # 运行结果: (5.27, 10.03] 65 (0.26, 0.94] 65 (-0.462, 0.26] 65 (-10.030999999999999, -4.836] 65 (2.938, 5.27] 64 (1.738, 2.938] 64 (-1.352, -0.462] 64 (-2.444, -1.352] 64 (-4.836, -2.444] 64 (0.94, 1.738] 63 Name: p_change, dtype: int64
自定义区间分组:
pd.cut(data, bins)
# 自己指定分组区间 bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100] p_counts = pd.cut(p_change, bins) p_counts.value_counts() # 运行结果: (0, 3] 215 (-3, 0] 188 (3, 5] 57 (-5, -3] 51 (7, 100] 35 (5, 7] 35 (-100, -7] 34 (-7, -5] 28 Name: p_change, dtype: int64
7.3.3 股票涨跌幅分组数据变成one-hot编码
- 什么是one-hot编码
把每个类别生成一个布尔列,这些列中只有一列可以为这个样本取值为1.其又被称为热编码。
把下图中左边的表格转化为使用右边形式进行表示:
下面看看pandas中是怎么实现的:
-
pandas.get_dummies(data, prefix=None)
-
data:array-like, Series, or DataFrame
-
prefix:分组名字
下面是例子:
# 得出one-hot编码矩阵 dummies = pd.get_dummies(p_counts, prefix="rise")
运行结果:
8、高级处理-合并
如果你的数据由多张表组成,那么有时候需要将不同的内容合并在一起分析
8.1 pd.concat实现数据合并
-
pd.concat([data1, data2], axis=1)
-
按照行或列进行合并,axis=0为列索引,axis=1为行索引
比如我们将刚才处理好的one-hot编码与原数据合并:
# 按照行索引进行 pd.concat([data, dummies], axis=1)
结果:
8.2 pd.merge
-
pd.merge(left, right, how='inner', on=None)
-
可以指定按照两组数据的共同键值对合并或者左右各自
-
left
: DataFrame -
right
: 另一个DataFrame -
on
: 指定的共同键 -
how
:按照什么方式连接,下面的表格是说明
例子:
left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'], 'key2': ['K0', 'K1', 'K0', 'K1'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']}) right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'], 'key2': ['K0', 'K0', 'K0', 'K0'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']})
- 内连接:健相同的取上,不同的删掉
# 默认内连接 result = pd.merge(left, right, on=['key1', 'key2'])
结果:
- 左连接:按左边的数据进行合并
result = pd.merge(left, right, how='left', on=['key1', 'key2'])
结果:
- 右连接:按右边的数据进行合并
result = pd.merge(left, right, how='right', on=['key1', 'key2'])
- 外链接:无论健是否相同都取上,对应不上的使用NaN填充。
result = pd.merge(left, right, how='outer', on=['key1', 'key2'])
结果:
9、高级处理-交叉表与透视表
9.1 交叉表与透视表什么作用
探究股票的涨跌与星期几有关?
以下图当中表示,week代表星期几,1,0代表这一天股票的涨跌幅是好还是坏,里面的数据代表比例
可以理解为所有时间为星期一等等的数据当中涨跌幅好坏的比例
-
交叉表:交叉表用于计算一列数据对于另外一列数据的分组个数(用于统计分组频率的特殊透视表)
-
pd.crosstab(value1, value2)
-
透视表:透视表是将原有的DataFrame的列分别作为行索引和列索引,然后对指定的列应用聚集函数
-
data.pivot_table()
-
DataFrame.pivot_table([], index=[])
9.2 案例分析
9.2.1 数据准备
-
准备两列数据,星期数据以及涨跌幅是好是坏数据
-
进行交叉表计算
# 寻找星期几跟股票张得的关系 # 1、先把对应的日期找到星期几 date = pd.to_datetime(data.index).weekday data['week'] = date # 增加一列 # 2、假如把p_change按照大小去分个类0为界限 data['posi_neg'] = np.where(data['p_change'] > 0, 1, 0) # 通过交叉表找寻两列数据的关系 count = pd.crosstab(data['week'], data['posi_neg'])
结果:
但是我们看到count只是每个星期日子的好坏天数,并没有得到比例,该怎么去做?
- 对于每个星期一等的总天数求和,运用除法运算求出比例
# 算数运算,先求和 sum = count.sum(axis=1).astype(np.float32) # 进行相除操作,得出比例 pro = count.div(sum, axis=0)
结果:
9.2.2 查看效果
使用plot画出这个比例,使用stacked的柱状图
pro.plot(kind='bar', stacked=True) plt.show()
9.2.3 使用pivot_table(透视表)实现
使用透视表,刚才的过程更加简单
# 通过透视表,将整个过程变成更简单一些 data.pivot_table(['posi_neg'], index='week')
结果:
10、高级处理-分组与聚合
分组与聚合通常是分析数据的一种方式,通常与一些统计函数一起使用,查看数据的分组情况
10.1 什么分组与聚合
下图展示了分组与聚合的概念:
10.2 分组API
-
DataFrame.groupby(key, as_index=False)
-
key:分组的列数据,可以多个
案例:不同颜色的不同笔的价格数据
col =pd.DataFrame({'color': ['white','red','green','red','green'], 'object': ['pen','pencil','pencil','ashtray','pen'],'price1':[5.56,4.20,1.30,0.56,2.75],'price2':[4.75,4.12,1.60,0.75,3.15]}) # 结果: color object price1 price2 0 white pen 5.56 4.75 1 red pencil 4.20 4.12 2 green pencil 1.30 1.60 3 red ashtray 0.56 0.75 4 green pen 2.75 3.15
- 进行分组,对颜色分组,price进行聚合:
# 按color分组,再取出price1列求平均值 col.groupby(['color'])['price1'].mean() # 和上述一个功能 col['price1'].groupby(col['color']).mean() # 结果: color green 2.025 red 2.380 white 5.560 Name: price1, dtype: float64 # 分组,数据的结构不变 col.groupby(['color'], as_index=False)['price1'].mean() # 结果: color price1 0 green 2.025 1 red 2.380 2 white 5.560
10.3 星巴克零售店铺数据
现在我们有一组关于全球星巴克店铺的统计数据,如果我想知道美国的星巴克数量和中国的哪个多,或者我想知道中国每个省份星巴克的数量的情况,那么应该怎么办?
数据来源:https://www.kaggle.com/starbucks/store-locations/data
10.3.1 数据获取
从文件中读取星巴克店铺数据
# 导入星巴克店的数据 starbucks = pd.read_csv("./data/starbucks/directory.csv")
10.3.2 进行分组聚合
# 按照国家分组,求出每个国家的星巴克零售店数量 count = starbucks.groupby(['Country']).count()
画图显示结果:
count['Brand'].plot(kind='bar', figsize=(20, 8)) plt.show()
假设我们加入省市一起进行分组:
# 设置多个索引,set_index() starbucks.groupby(['Country', 'State/Province']).count()
结果:
11、电影案例分析
11.1 需求
现在我们有一组从2006年到2016年1000部最流行的电影数据
数据来源:https://www.kaggle.com/damianpanek/sunday-eda/data
-
问题1:我们想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?
-
问题2:对于这一组电影数据,如果我们想rating,runtime的分布情况,应该如何呈现数据?
-
问题3:对于这一组电影数据,如果我们希望统计电影分类(genre)的情况,应该如何处理数据?
11.2 实现
首先获取导入包,获取数据:
%matplotlib inline import pandas as pd import numpy as np from matplotlib import pyplot as plt
#文件的路径 path = "./data/IMDB-Movie-Data.csv" #读取文件 df = pd.read_csv(path)
11.2.1 问题一:
我们想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?
- 得出评分的平均分
使用mean函数
df["Rating"].mean() # 结果: 6.723200000000003
- 得出导演人数信息
求出唯一值,然后进行形状获取
## 导演的人数 # df["Director"].unique().shape[0] # 方法一 np.unique(df["Director"]).shape[0] # 方法二 644
11.2.2 问题二:
对于这一组电影数据,如果我们想Rating的分布情况,应该如何呈现数据?
- 直接呈现,以直方图的形式
选择分数列数据,进行plot
df["Rating"].plot(kind='hist',figsize=(20,8)) plt.show()
效果:
发现直接通过pandas的plot画图,显示的下标不合适,这个时候我们需要借助matplotlib来改变。
- Rating进行分布展示
进行绘制直方图
# 1.添加画布 plt.figure(figsize=(20,8),dpi=100) # 2.画图 plt.hist(df["Rating"].values,bins=20) # 2.1 添加刻度线 max_ = df["Rating"].max() min_ = df["Rating"].min() x_ticks = np.linspace(min_, max_, num=21) plt.xticks(x_ticks) # 2.2添加网格线 plt.grid() # 3.显示 plt.show()
数据分析:从上图中就可以发现,评分主要分布在5~8分之间
11.2.3 问题三:
对于这一组电影数据,如果我们希望统计电影分类(genre)的情况,应该如何处理数据?
-
思路分析
-
1、创建一个全为0的dataframe,列索引置为电影的分类,temp_df
-
2、遍历每一部电影,temp_df中把分类出现的列的值置为1
-
3、求和
-
思路
下面接着看:
- 1、创建一个全为0的dataframe,列索引置为电影的分类,temp_df
# 进行字符串分割 temp_list = [i.split(",") for i in df["Genre"]] # 获取电影的分类 genre_list = np.unique([i for j in temp_list for i in j]) # 增加新的列,创建全为0的dataframe temp_df = pd.DataFrame(np.zeros([df.shape[0],genre_list.shape[0]]),columns=genre_list)
- 2、遍历每一部电影,temp_df中把分类出现的列的值置为1
for i in range(1000): #temp_list[i] 就是['Action','Adventure','Animation']等 temp_df.ix[i,temp_list[i]]=1 print(temp_df.sum().sort_values()) # 求合并排序,ascending=False为倒序
- 3、求和,绘图
temp_df.sum().sort_values(ascending=False).plot(kind="bar",figsize=(20,8),fontsize=20,colormap="cool") plt.show()
结果:
(完)
题外话
当下这个大数据时代不掌握一门编程语言怎么跟的上脚本呢?当下最火的编程语言Python前景一片光明!如果你也想跟上时代提升自己那么请看一下.
感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
简历模板
