异常检测 (anomaly detection)
或者又被称为“离群点检测” (outlier detection),是机器学习研究领域中跟现实紧密联系、有广泛应用需求的一类问题。但是,什么是异常,并没有标准答案,通常因具体应用场景而异。如果要给一个比较通用的定义,很多文献通常会引用 Hawkins 在文章开头那段话。很多后来者的说法,跟这个定义大同小异。这些定义虽然笼统,但其实暗含了认定“异常”的两个标准或者说假设:
-
异常数据跟样本中大多数数据不太一样。
-
异常数据在整体数据样本中占比比较小。
简介
Forest (Isolation Forest)孤立森林 是一个基于Ensemble的快速异常检测方法,具有线性时间复杂度和高精准度。其可以用于网络安全中的攻击检测,金融交易欺诈检测,疾病侦测,和噪声数据过滤等。
动机
目前学术界对异常的定义有很多种,iForest 适用与连续数据的异常检测,将异常定义为“容易被孤立的离群点——可以理解为分布稀疏且离密度高的群体较远的点。用统计学来解释,在数据空间里面,分布稀疏的区域表示数据发生在此区域的概率很低,因而可以认为落在这些区域里的数据是异常的。
iForest属于Non-parametric和unsupervised的方法,即不用定义数学模型也不需要有标记的训练。对于如何查找哪些点是否容易被孤立(isolated),
算法介绍
我们先用一个简单的例子来说明 Isolation Forest 的基本想法。假设现在有一组一维数据(如下图所示),我们要对这组数据进行随机切分,希望可以把点 A 和点 B 单独切分出来。具体的,我们先在最大值和最小值之间随机选择一个值 x,然后按照 <x 和 >=x 可以把数据分成左右两组。然后,在这两组数据中分别重复这个步骤,直到数据不可再分。显然,点 B 跟其他数据比较疏离,可能用很少的次数就可以把它切分出来;点 A 跟其他数据点聚在一起,可能需要更多的次数才能把它切分出来。
我们把数据从一维扩展到两维。同样的,我们沿着两个坐标轴进行随机切分,尝试把下图中的点A'和点B'分别切分出来。我们先随机选择一个特征维度,在这个特征的最大值和最小值之间随机选择一个值,按照跟特征值的大小关系将数据进行左右切分。然后,在左右两组数据中,我们重复上述步骤,再随机的按某个特征维度的取值把数据进行细分,直到无法细分,即:只剩下一个数据点,或者剩下的数据全部相同。跟先前的例子类似,直观上,点B'跟其他数据点比较疏离,可能只需要很少的几次操作就可以将它细分出来;点A'需要的切分次数可能会更多一些。