底标和顶标
形如 max1<x<100f(x)\max \limits_{1<x<100}f(x)1<x<100maxf(x) 中的 1<x<100 ,或者∑n=0N−1\sum\limits_{n=0}^{N-1}n=0∑N−1中的n=0n=0n=0和N−1N-1N−1这种,总之是位于正上或者正下方的标记,语法格式是
\limts_{底标}^{顶标}
例:
\max\limits_{1<x<100}f(x) ⇒max1<x<100f(x)\Rightarrow \max\limits_{1<x<100}f(x)⇒1<x<100maxf(x)
\sum\limits_{n=0}^{N-1} ⇒∑n=0N−1\Rightarrow \sum\limits_{n=0}^{N-1}⇒n=0∑N−1
规律:“_”后接下标,“^”后接上标,这个和角标的规律一样,且不分先后顺序。
分数
语法格式:
\frac{分子}{分母}
例:
\frac{z}{z-a} ⇒zz−a\quad\Rightarrow\frac{z}{z-a}⇒z−az
\frac{1}{12} ⇒112\quad\Rightarrow\frac{1}{12}⇒121
空格
nbsp nbsp nbsp \\
emsp emsp emsp \\ 
nbsp nbsp nbsp
emsp emsp emsp
矩阵
\begin{matrix}
abcdefg & hyjklmn& opq \
rst & uvw& xyz \
\end{matrix} \tag{1}
abcdefghyjklmnopqrstuvwxyz \begin{matrix} abcdefg & hyjklmn& opq \\ rst & uvw& xyz \\ \end{matrix} abcdefgrsthyjklmnuvwopqxyz
\begin{aligned}
f(x)&=\tfrac{1}{12} \cdot r, & g(x) &= \tfrac{1}{24} \cdot x, & x&<12 \
f(x)&=1, &g(x) &= \tfrac{1}{8} \cdot x - 1, & 12 &\le x < 16 \
f(x)&=1, &g(x) &= 1, & x &\ge 16
\end{aligned}
f(x)=112⋅r,g(x)=124⋅x,x<12f(x)=1,g(x)=18⋅x−1,12≤x<16f(x)=1,g(x)=1,x≥16 \begin{aligned} f(x)&=\tfrac{1}{12} \cdot r, & g(x) &= \tfrac{1}{24} \cdot x, & x&<12 \\ f(x)&=1, &g(x) &= \tfrac{1}{8} \cdot x - 1, & 12 &\le x < 16 \\ f(x)&=1, &g(x) &= 1, & x &\ge 16 \end{aligned} f(x)f(x)f(x)=121⋅r,=1,=1,g(x)g(x)g(x)=241⋅x,=81⋅x−1,=1,x12x<12≤x<16≥16
\begin{aligned}
x(n) &= x_{ep}(n) + x_{op}(n) = x_r(n) + jx_i(n)\
X(k)& = Re[X(k)]+jIm[X(k)] =X_{ep}[X(k)] + X_{op}[X(k)]\
\end{aligned}\
\left{\begin{aligned}
Re[X(k)] &= DFT[x_{ep}(n)] &X_{ep}(k) &= DFT[x_r(n)] \
jIm[X(k)] &= DFT[x_{op}(n)]&X_{op}(k) &= DFT[jx_i(n)]\
\end{aligned}\right.
x(n)=xep(n)+xop(n)=xr(n)+jxi(n)X(k)=Re[X(k)]+jIm[X(k)]=Xep[X(k)]+Xop[X(k)]{Re[X(k)]=DFT[xep(n)]Xep(k)=DFT[xr(n)]jIm[X(k)]=DFT[xop(n)]Xop(k)=DFT[jxi(n)] \begin{aligned} x(n) &= x_{ep}(n) + x_{op}(n) = x_r(n) + jx_i(n)\\ X(k)& = Re[X(k)]+jIm[X(k)] =X_{ep}[X(k)] + X_{op}[X(k)]\\ \end{aligned}\\ \left\{\begin{aligned} Re[X(k)] &= DFT[x_{ep}(n)] &X_{ep}(k) &= DFT[x_r(n)] \\ jIm[X(k)] &= DFT[x_{op}(n)]&X_{op}(k) &= DFT[jx_i(n)]\\ \end{aligned}\right. x(n)X(k)=xep(n)+xop(n)=xr(n)+jxi(n)=Re[X(k)]+jIm[X(k)]=Xep[X(k)]+Xop[X(k)]{Re[X(k)]jIm[X(k)]=DFT[xep(n)]=DFT[xop(n)]Xep(k)Xop(k)=DFT[xr(n)]=DFT[jxi(n)]