番茄叶片病害检测数据集-41366张图片 植物病害 智慧农业 番茄种植 农业AI 边缘计算 精准植保 植物病理

该文章已生成可运行项目,

在这里插入图片描述

📦 已发布目标检测数据集合集(持续更新)

数据集名称图像数量应用方向博客链接
🔌 电网巡检检测数据集1600 张电力设备目标检测点击查看
🔥 火焰 / 烟雾 / 人检测数据集10000张安防监控,多目标检测点击查看
🚗 高质量车牌识别数据集10,000 张交通监控 / 车牌识别点击查看
🌿 农田杂草航拍检测数据集1,200 张农业智能巡检点击查看
🐑 航拍绵羊检测数据集1,700 张畜牧监控 / 航拍检测点击查看
🌡️ 热成像人体检测数据集15,000 张热成像下的行人检测点击查看
🦺 安全背心检测数据集3,897 张工地安全 / PPE识别点击查看
🚀 火箭检测数据集介绍12,000 张智慧医疗 / 养老护理点击查看
⚡ 绝缘子故障检测数据集2,100张无人机巡检/智能运维点击查看
🚦交通标志检测数据集1866张智能驾驶系统/地图数据更新点击查看
🚧 道路交通标志检测数据集2,000张智能地图与导航/交通监控与执法点击查看
😷 口罩检测数据集1,600张疫情防控管理/智能门禁系统点击查看
🦌 野生动物检测数据集5,138张野生动物保护监测/智能狩猎相机系统点击查看
🍎 水果识别数据集2,611张图片智能零售/智慧农业点击查看
🚁 无人机目标检测数据集14,751张无人机检测/航拍图像点击查看
🚬 吸烟行为检测数据集2,108张公共场所禁烟监控/健康行为研究点击查看
🛣️ 道路坑洞检测数据集8,300张智能道路巡检系统/车载安全监测设备点击查看
🛠️ 井盖识别数据集2,700 张道路巡检 智能城市点击查看
🧯 消防器材检测数据集9,600 张智慧安防系统 自动审核系统点击查看
📱 手机通话检测数据集3,100张智能监控系统 驾驶安全监控点击查看
🚜 建筑工地车辆检测数据集28,000 张施工现场安全监控 智能工地管理系统点击查看
🏊 游泳人员检测数据集4,500 张游泳池安全监控 海滩救生系统点击查看
🌿 植物病害检测数据集6,200 张智能农业监测系统 家庭园艺助手点击查看
🐦 鸟类计算机视觉数据集6,200 张鸟类保护监测 生态环境评估点击查看
🚁 无人机计算机视觉数据集7,000 张空域安全监管 无人机反制系统点击查看
🛡️ Aerial_Tank_Images 坦克目标检测数据集2,200 张军事目标识别与侦查 卫星遥感目标识别点击查看
♻️ 塑料可回收物检测数据集10,000 张智能垃圾分类系统 环保回收自动化点击查看
🏢 建筑物实例分割数据集9,700 张城市规划与发展 智慧城市管理点击查看
😊 人脸情绪检测数据集9,400 张智能客服系统 在线教育平台点击查看
🔍 红外人员车辆检测数据集53,000 张智能安防监控系统 边境安全防控点击查看
🚗 停车空间检测数据集3,100 张实时车位导航系统 智能停车收费管理点击查看
♻ 垃圾分类检测数据集15,000 张智能垃圾分类 回收站与环保设施自动化点击查看
✂️ 石头剪刀布手势识别数据集3,100 张智能游戏系统 人机交互界面点击查看
🍌 腐烂香蕉检测数据集4,267张食品质量检测 智能农产品分拣系统点击查看
🎰 扑克牌数字检测数据集6,240 张智能扑克游戏系统 赌场监控与安全点击查看
🚗 车牌识别数据集12,658张智能交通管理系统 停车场自动化管理点击查看
🏗️ 建筑设备检测数据集6,247张智能工地管理 施工安全监控点击查看
🦺 个人防护装备检测数据集7,892 张工业安全监控 建筑工地安全管理点击查看
⚓ 船舶检测数据集7,542张海洋交通监管 港口智能化管理点击查看
🚁 空中救援任务数据集6,742张自然灾害应急救援 海上搜救任务点击查看
✈️ 固定翼无人机检测数据集8,247张空域安全监管 机场反无人机系统点击查看
😷 口罩检测数据集8,432张公共场所监控系统 企业复工防疫管理点击查看
🚁 无人机检测数据集6,847张机场空域安全管理 重要设施防护监控点击查看
✂️ 剪刀石头布手势识别数据集2,376张智能游戏开发 儿童教育娱乐点击查看
🦺 安全背心识别数据集4,892张建筑工地安全监管 工业园区智能巡检点击查看
🥤 饮料容器材质检测数据集6,342张智能垃圾分拣系统 生产线质量检测点击查看
🚚 物流运输场景数据集7,854张智能仓储管理系统 物流车队智能调度点击查看
🌡️ 热成像数据集9,127张夜间安防监控 工业设备检测点击查看
🚗 车辆损伤识别数据集6,742 张保险理赔自动化 智能汽车维修评估点击查看
🃏 扑克牌牌面识别数据集8,432 张智能扑克游戏系统 线上扑克直播辅助点击查看
🔴 围棋棋子检测数据集8,247 张智能围棋对弈系统 围棋教学平台点击查看
🚀 火箭检测数据集6,425 张航天发射监测 军事情报分析点击查看
⚡ 摔跤跌倒检测数据集9,354 张体育安全监测系统 智能运动防护设备点击查看
🚗 PKLot停车位检测数据集12,416 张计算机视觉 停车位检测点击查看
🚗 车辆分类数据集28,045 张车辆识别 交通工具点击查看
🚦 道路标识检测数据集2,893 张道路标识识别 自动驾驶点击查看
📦 集装箱侧面分类数据集2,408 张集装箱识别 港口物流点击查看
🚦 交通与道路标识检测数据集10,000张交通标志识别 自动驾驶点击查看
🎯 COCO数据集123,272张目标检测 COCO点击查看
👥 人群检测数据集7,300张人流统计 行人检测点击查看
🔢 MNIST手写数字识别数据集70,000张图像分类 手写识别点击查看
🐦 鸟类物种识别数据集9,880张鸟类识别 生态保护点击查看
🩺 皮肤癌检测数据集9,900张皮肤癌检测 医学影像点击查看
🚗 汽车颜色分类数据集2,004张汽车识别 颜色检测点击查看
⚔️ 暴力与非暴力行为识别数据集10,000张行为识别 暴力检测点击查看
🌿 植物病害检测数据集5,500张农业AI 植物病害识别点击查看
🧠 脑肿瘤检测数据集9,900张医学影像 脑肿瘤识别点击查看
🏀 篮球场景目标检测数据集4,100张体育AI 篮球分析点击查看
⚽ 足球场景目标检测数据集6,700张体育AI 足球分析点击查看
🗑️ 垃圾分类检测数据集10,464张垃圾分类 环保科技点击查看
🚁 无人机检测数据集9,495张无人机识别 低空安全点击查看
😊 人类面部情绪识别数据集9,400张情绪识别 人脸识别点击查看
🔥 烟雾与火灾检测数据集536张火灾检测 烟雾识别点击查看
🔥 火灾检测计算机视觉数据集10,967张火灾检测 火灾预警点击查看
🌐 网站截图计算机视觉数据集1,286张网页分析 UI自动化点击查看
🛣️ 车道线实例分割数据集1,610张车道线检测 自动驾驶点击查看
🛣️ 道路实例分割数据集1,114张实例分割 道路检测点击查看
🚗 汽车损伤检测数据集4500张汽车损伤识别 保险定损点击查看
🏗️ 建筑物实例分割数据集9,700张遥感图像 建筑物提取点击查看
🥚 CVR EGG 实例分割数据集1,438张禽蛋检测 农业AI点击查看
🚪 房间检测计算机视觉数据集1,272张实例分割 建筑图纸识别点击查看
💅 美甲实例分割数据集3,626张美甲识别 虚拟试妆点击查看
🚗 汽车损伤严重程度分割数据集2,485张汽车损伤检测 保险定损点击查看
🪵 木材缺陷检测数据集10,000张木材缺陷检测 工业质检点击查看
🧑‍🦯 人体姿态与行为实例分割数据集4,567张人体姿态识别 行为分析点击查看
📦 条形码检测数据集9,988张条形码识别 零售自动化点击查看
🚗 道路车辆检测数据集4,058张自动驾驶 车辆识别点击查看
🎮 麻将计算机视觉模型数据集212张麻将识别 游戏AI点击查看
🛡️ 个人防护装备检测数据集12,879张安全生产 工业AI点击查看
🅰️ OCR字符检测数据集12,879张OCR字符检测 车牌识别点击查看
🔫 武器检测数据集9,672 张武器识别 公共安全点击查看
🔥 火灾检测数据集8,939 张火灾识别 消防安全点击查看
🧱 墙体检测计算机视觉数据集6,646 张墙体识别 建筑图纸解析点击查看
🩸 肝病细胞检测数据集105 张细胞识别 数字病理点击查看
🚗 CCTV车辆与摩托车检测数据集1,023 张车辆识别 摩托车检测点击查看
🍅 番茄叶片病害检测数据集4,132 张植物病害识别 智慧农业点击查看
🔥 火灾与烟雾检测数据集8,875 张火灾识别 烟雾检测点击查看
🎮 CSGO 游戏目标检测数据集2,427张游戏AI CSGO点击查看
🚬 吸烟行为检测数据集3,895张吸烟行为识别 公共健康点击查看
🔪 刀具检测数据集9,219张刀具识别 枪械检测点击查看
🐾 动物目标检测数据集1,000张动物识别 智能农场点击查看
🃏 扑克牌检测数据集1,300张扑克牌识别 游戏AI点击查看
🚨 跌倒检测数据集4,600张跌倒检测 行为识别点击查看
🛡️ 军用车辆检测数据集3,143张军用车辆识别 战场感知点击查看
🔧 电缆损伤检测数据集1,318张电缆损伤识别 工业质检点击查看
👤 人物检测数据集1,687张人物识别 安防监控点击查看
🛡️ 军事目标检测数据集6,149张军事识别 无人机侦察点击查看
🚀 火箭检测计算机视觉数据集12,303张火箭识别 航天监控点击查看
🏗️ 建筑工地PPE检测数据集8,845张PPE识别 工地安全点击查看
👤 人物检测计算机视觉数据集2,545张人物检测 安防监控点击查看
📱 驾驶员行为检测数据集8,867张人物检测 安防监控点击查看
🌙 红外行人与车辆检测数据集53,483张红外成像 行人检测点击查看
🏐 排球动作检测数据集13,925张排球动作识别 体育分析点击查看
🗑️ 水域垃圾检测数据集2,273张水域垃圾识别 环保监测点击查看
🚗 达卡城市交通目标检测数据集1,502张城市交通 达卡数据集点击查看
⚙️ 金属结构腐蚀检测数据集1,249张工业缺陷检测 腐蚀识别点击查看
🚦 交通标志检测数据集4,113张交通标志识别 自动驾驶点击查看
🅿️ 停车位状态检测数据集3,123张智能停车 车位识别点击查看
⛳ 高尔夫球与球杆检测数据集6,082张高尔夫分析 运动科学点击查看
🖥️ UI元素检测数据集5,428张UI自动化 无障碍访问点击查看
✋ 手势识别数据集2,122张手势识别 人机交互点击查看
🛒 杂货商品检测数据集83,699张商品识别 智能零售点击查看
📷 野外相机动物检测数据集1,311张野外相机 野生动物识别点击查看
🚜 工程机械检测数据集2,655张工程机械识别 智慧工地点击查看
⚽ 足球检测数据集1,237张足球识别 体育分析点击查看
🏀 篮球运动目标检测数据集3,666张篮球识别 体育分析点击查看
🚧 障碍物检测数据集9,183张障碍物识别 自动驾驶点击查看
⚠️ 安全锥检测数据集1,703张安全锥识别 自动驾驶点击查看
♟ 国际象棋棋子检测数据集3,946张棋子识别 国际象棋点击查看
👤 人体检测数据集7,785张人体识别 行人检测点击查看
🩻 X光手部骨骼检测数据集3,839张医学影像 X光识别点击查看
🛒 R2P2 食品杂货检测数据集2,745张食品识别 智能零售点击查看
🛋️ 室内家具检测数据集8,055张室内设计 智能家居点击查看
🏗️ 建筑工程车辆检测数据集7,615张智慧工地 施工安全点击查看
🎥 航拍军事目标检测数据集10,000张军事识别 无人机侦察点击查看
🔥 火灾检测数据集86,617张火灾识别 烟雾检测点击查看
💥 暴力与武器检测数据集5,953张暴力行为识别 武器检测点击查看
🐾 牛津宠物数据集3,680张宠物识别 细粒度分类点击查看
🛒 超市货架空位检测数据集1,444张货架空位检测 缺货识别点击查看
🚧 街道无障碍设施检测数据集4,968张无障碍设施 智慧城市点击查看
🎾 网球检测数据集2,244张网球识别 体育分析点击查看
🚁 无人机检测数据集7,248张无人机识别 空域安全点击查看
🤖 机器人视觉垃圾分类数据集7,984张垃圾分类 智能机器人点击查看
🐕 斯坦福犬类数据集9,984张犬种识别 细粒度分类点击查看
🍎 水果检测数据集1,007张水果识别 智能零售点击查看
🔥 火源检测数据集9,128张火源识别 智能安防点击查看
👷 个人防护装备检测数据集3,551张个人防护装备 智慧工地点击查看
👤 人体检测数据集10,000张人体检测 智能监控点击查看
🦁 多物种动物检测数据集9,073张野生动物识别 生态保护点击查看
🐱 猫只检测数据集1,159张猫只识别 宠物管理点击查看
🐷 猪只检测数据集1,092张猪只识别 智慧养殖点击查看
🗑️ 垃圾分类与物体检测数据集2,362张垃圾分类 环保科技点击查看
🖐️ 印度手语检测数据集1,748张手语识别 无障碍沟通点击查看
⚽ 足球比赛分析数据集8,873张足球分析 体育科技点击查看

📌 每篇文章附带模型指标、训练思路与推理部署建议,欢迎点赞收藏支持~

在这里插入图片描述

c检测数据集介绍

📌 数据集概览

本项目是专注于番茄叶片病害智能识别与定位的计算机视觉数据集,共包含约 41366张图像,主要用于训练深度学习模型在田间、温室或实验室环境下精准识别和检测11种常见番茄叶片病害及健康状态。该数据集覆盖多种病害症状、拍摄角度与光照条件,是构建智慧农业、植物病理诊断与自动化植保系统的理想基础数据。

  • 图像数量:41366 张
  • 类别数:11 类
  • 适用任务:目标检测(Object Detection)
  • 适配模型:YOLOv5、YOLOv8、Faster R-CNN、SSD 等主流框架

包含类别

类别英文名称描述
细菌性斑点病Bacterial Spot叶片出现水渍状小斑点,后期变褐色
早疫病Early Blight叶片边缘出现同心轮纹状病斑
健康Healthy无任何病害症状的正常叶片
缺铁症Iron Deficiency叶片脉间失绿发黄,叶脉保持绿色
晚疫病Late Blight叶片出现油渍状暗绿色病斑,边缘有白色霉层
叶霉病Leaf Mold叶片背面出现灰紫色霉层,正面呈黄色斑块
蛀叶蛾危害Leaf_Miner叶片内部被幼虫蛀食,形成蜿蜒隧道
花叶病毒Mosaic Virus叶片出现黄绿相间的花叶或畸形
链格孢叶斑病Septoria叶片出现圆形或近圆形黑褐色病斑,边缘明显
蜘蛛螨危害Spider Mites叶片出现褪绿斑点,严重时布满蛛丝
黄化卷叶病毒Yellow Leaf Curl Virus叶片卷曲、变黄、变厚,植株矮化

数据集覆盖从轻微症状到严重病变的多种形态,能够显著提升模型在真实农业生产环境中的病害早期预警与精准识别能力。

🎯 应用场景

该数据集非常适用于以下场景与研究方向:

  • 智慧农业植保系统
    自动识别番茄植株病害类型,指导农民精准施药,减少农药滥用。

  • 温室环境监测
    在智能温室中部署摄像头,实现24小时不间断病害监控与预警。

  • 移动端植物医生APP
    农民通过手机拍照即可获得病害诊断结果与防治建议,降低技术门槛。

  • 科研与教学应用
    用于植物病理学研究、农业工程教学及计算机视觉算法竞赛。

  • 农业保险与评估
    为保险公司提供客观数据支持,用于作物损失评估与理赔决策。

  • 种子与农资企业
    用于新品种抗病性测试、农药效果评估与产品推广。

🖼 数据样本展示

以下展示部分数据集内的样本图片(均带有目标检测框):
在这里插入图片描述
在这里插入图片描述

数据集包含多种真实农业场景下的图像:

  • 多病害阶段:涵盖病害初期、中期、晚期不同发展阶段
  • 多拍摄角度:正面、背面、侧面、俯视等多样化视角
  • 多光照条件:自然光、温室补光、阴影、逆光等多种照明环境
  • 多样背景:纯色背景、土壤、支架、其他植物等复杂背景
  • 单叶与多叶:包含单片叶子特写及整株植物上的多片叶子同框

场景涵盖室内外、昼夜、不同季节与地理环境,数据多样性优异,特别适合训练高鲁棒性的番茄病害检测模型。

使用建议

  1. 数据预处理优化

    • 统一输入尺寸(推荐640x640或832x832)以提升检测一致性
    • 应用针对性数据增强:随机亮度、对比度、模糊、遮挡模拟、视角旋转
    • 对“健康”与“轻微病害”等易混淆类别进行加权损失或困难样本挖掘
  2. 模型训练策略

    • 使用COCO或OpenImages预训练权重进行迁移学习
    • 考虑引入Soft-NMS或DIoU Loss提升密集或多病斑场景检测效果
    • 针对“叶霉病”、“花叶病毒”等纹理复杂类别,可使用注意力机制强化特征提取
  3. 实际部署考虑

    • 边缘设备轻量化:模型剪枝、量化后部署至农用无人机或手持终端
    • 实时性优先:优化推理速度,满足田间快速诊断需求
    • 误报抑制机制:结合叶片分割或颜色直方图分析降低非病害误检率
  4. 应用场景适配

    • 智能农机集成:部署于喷药无人机或采摘机器人,实现精准作业
    • 移动端APP:支持现场拍照或视频流实时分析,提供防治方案
    • 云端批处理:用于历史图像回溯与大数据分析,生成病害分布热力图
  5. 性能监控与改进

    • 建立不同场景下的精度-召回率基准测试(如温室 vs 田间,晴天 vs 阴天)
    • 收集困难样本(恶劣天气、严重遮挡、相似病害混淆等)进行模型强化
    • 定期更新数据集以覆盖新型病害或特殊品种(如樱桃番茄、彩色番茄)

🌟 数据集特色

  • 高质量标注:由植物病理学家参与标注,确保病害类型与边界准确
  • 场景多样性:涵盖大田、温室、实验室等多种真实农业环境
  • 时间跨度广:包含不同生长季节、时间段的数据,适应全年监测需求
  • 技术兼容性:支持主流深度学习框架和部署平台
  • 持续扩展:将新增其他蔬菜(如辣椒、茄子)病害或复合病害数据

📈 商业价值

该数据集在以下商业领域具有重要价值:

  • 农业科技公司:提升智能植保设备的核心诊断能力
  • 农药与化肥企业:用于产品效果验证与精准营销
  • 农业合作社与种植大户:降低人工巡检成本,提高管理效率
  • 政府与农业部门:赋能数字化监管,提升区域病害防控水平
  • 教育机构:用于农业科学教学、计算机视觉课程与学生竞赛

🔗 技术标签

计算机视觉 目标检测 植物病害 智慧农业 番茄种植 YOLO 农业AI 边缘计算 精准植保 植物病理


注意: 本数据集适用于研究、教育和商业用途。使用时请遵守相关农业法规与数据隐私规范,建议在实际应用中结合专业的植物病理学知识进行结果验证。

本教程介绍如何使用 YOLOv8 对目标进行识别与检测。涵盖环境配置、数据准备、训练模型、模型推理和部署等全过程。


📦 1. 环境配置

建议使用 Python 3.8+,并确保支持 CUDA 的 GPU 环境。

# 创建并激活虚拟环境(可选)
python -m venv yolov8_env
source yolov8_env/bin/activate  # Windows 用户使用 yolov8_env\Scripts\activate

安装 YOLOv8 官方库 ultralytics

pip install ultralytics

📁 2. 数据准备

2.1 数据标注格式(YOLO)

每张图像对应一个 .txt 文件,每行代表一个目标,格式如下:

<class_id> <x_center> <y_center> <width> <height>

所有值为相对比例(0~1)。

类别编号从 0 开始。

2.2 文件结构示例

datasets/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

2.3 创建 data.yaml 配置文件

path: ./datasets
train: images/train
val: images/val

nc: 11
names: ['Bent_Insulator', 'Broken_Insulator_Cap', '', ...]

🚀 3. 模型训练

YOLOv8 提供多种模型:yolov8n, yolov8s, yolov8m, yolov8l, yolov8x。可根据设备性能选择。

yolo detect train \
  model=yolov8s.pt \
  data=./data.yaml \
  imgsz=640 \
  epochs=50 \
  batch=16 \
  project=weed_detection \
  name=yolov8s_crop_weed
参数类型默认值说明
model字符串-指定基础模型架构文件或预训练权重文件路径(.pt/.yaml
data字符串-数据集配置文件路径(YAML 格式),包含训练/验证路径和类别定义
imgsz整数640输入图像的尺寸(像素),推荐正方形尺寸(如 640x640)
epochs整数100训练总轮次,50 表示整个数据集会被迭代 50 次
batch整数16每个批次的样本数量,值越大需要越多显存
project字符串-项目根目录名称,所有输出文件(权重/日志等)将保存在此目录下
name字符串-实验名称,用于在项目目录下创建子文件夹存放本次训练结果

关键参数补充说明:

  1. model=yolov8s.pt

    • 使用预训练的 YOLOv8 small 版本(平衡速度与精度)
    • 可用选项:yolov8n.pt(nano)/yolov8m.pt(medium)/yolov8l.pt(large)
  2. data=./data.yaml

    # 典型 data.yaml 结构示例
    path: ../datasets/weeds
    train: images/train
    val: images/val
    names:
      0: Bent_Insulator
      1: Broken_Insulator_Cap
      2: ...
      3: ...
    

📈 4. 模型验证与测试

4.1 验证模型性能

yolo detect val \
  model=runs/detect/yolov8s_crop_weed/weights/best.pt \
  data=./data.yaml
参数类型必需说明
model字符串要验证的模型权重路径(通常为训练生成的 best.ptlast.pt
data字符串与训练时相同的 YAML 配置文件路径,需包含验证集路径和类别定义

关键参数详解

  1. model=runs/detect/yolov8s_crop_weed/weights/best.pt

    • 使用训练过程中在验证集表现最好的模型权重(best.pt
    • 替代选项:last.pt(最终epoch的权重)
    • 路径结构说明:
      runs/detect/
      └── [训练任务名称]/
          └── weights/
              ├── best.pt   # 验证指标最优的模型
              └── last.pt   # 最后一个epoch的模型
      
  2. data=./data.yaml

    • 必须与训练时使用的配置文件一致
    • 确保验证集路径正确:
      val: images/val  # 验证集图片路径
      names:
        0: crop
        1: weed
      

常用可选参数

参数示例值作用
batch16验证时的批次大小
imgsz640输入图像尺寸(需与训练一致)
conf0.25置信度阈值(0-1)
iou0.7NMS的IoU阈值
device0/cpu选择计算设备
save_jsonTrue保存结果为JSON文件

典型输出指标

Class     Images  Instances      P      R      mAP50  mAP50-95
all        100       752      0.891  0.867    0.904    0.672
crop       100       412      0.912  0.901    0.927    0.701
weed       100       340      0.870  0.833    0.881    0.643

4.2 推理测试图像

yolo detect predict \
  model=runs/detect/yolov8s_crop_weed/weights/best.pt \
  source=./datasets/images/val \
  save=True

🧠 5. 自定义推理脚本(Python)

from ultralytics import YOLO
import cv2

# 加载模型
model = YOLO('runs/detect/yolov8s_crop_weed/weights/best.pt')

# 推理图像
results = model('test.jpg')

# 可视化并保存结果
results[0].show()
results[0].save(filename='result.jpg')

🛠 6. 部署建议

✅ 本地运行:通过 Python 脚本直接推理。

🌐 Web API:可用 Flask/FastAPI 搭建检测接口。

📦 边缘部署:YOLOv8 支持导出为 ONNX,便于在 Jetson、RKNN 等平台上部署。

导出示例:

yolo export model=best.pt format=onnx

📌 总结流程

阶段内容
✅ 环境配置安装 ultralytics, PyTorch 等依赖
✅ 数据准备标注图片、组织数据集结构、配置 YAML
✅ 模型训练使用命令行开始训练 YOLOv8 模型
✅ 验证评估检查模型准确率、mAP 等性能指标
✅ 推理测试运行模型检测实际图像目标
✅ 高级部署导出模型,部署到 Web 或边缘设备
本文章已经生成可运行项目
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值