车道线实例分割数据集-1,610张图片 实例分割 车道线检测 自动驾驶 ADAS 智能交通 高精地图

部署运行你感兴趣的模型镜像

在这里插入图片描述

📦 已发布目标检测数据集合集(持续更新)

数据集名称图像数量应用方向博客链接
🔌 电网巡检检测数据集1600 张电力设备目标检测点击查看
🔥 火焰 / 烟雾 / 人检测数据集10000张安防监控,多目标检测点击查看
🚗 高质量车牌识别数据集10,000 张交通监控 / 车牌识别点击查看
🌿 农田杂草航拍检测数据集1,200 张农业智能巡检点击查看
🐑 航拍绵羊检测数据集1,700 张畜牧监控 / 航拍检测点击查看
🌡️ 热成像人体检测数据集15,000 张热成像下的行人检测点击查看
🦺 安全背心检测数据集3,897 张工地安全 / PPE识别点击查看
🚀 火箭检测数据集介绍12,000 张智慧医疗 / 养老护理点击查看
⚡ 绝缘子故障检测数据集2,100张无人机巡检/智能运维点击查看
🚦交通标志检测数据集1866张智能驾驶系统/地图数据更新点击查看
🚧 道路交通标志检测数据集2,000张智能地图与导航/交通监控与执法点击查看
😷 口罩检测数据集1,600张疫情防控管理/智能门禁系统点击查看
🦌 野生动物检测数据集5,138张野生动物保护监测/智能狩猎相机系统点击查看
🍎 水果识别数据集2,611张图片智能零售/智慧农业点击查看
🚁 无人机目标检测数据集14,751张无人机检测/航拍图像点击查看
🚬 吸烟行为检测数据集2,108张公共场所禁烟监控/健康行为研究点击查看
🛣️ 道路坑洞检测数据集8,300张智能道路巡检系统/车载安全监测设备点击查看
🛠️ 井盖识别数据集2,700 张道路巡检 智能城市点击查看
🧯 消防器材检测数据集9,600 张智慧安防系统 自动审核系统点击查看
📱 手机通话检测数据集3,100张智能监控系统 驾驶安全监控点击查看
🚜 建筑工地车辆检测数据集28,000 张施工现场安全监控 智能工地管理系统点击查看
🏊 游泳人员检测数据集4,500 张游泳池安全监控 海滩救生系统点击查看
🌿 植物病害检测数据集6,200 张智能农业监测系统 家庭园艺助手点击查看
🐦 鸟类计算机视觉数据集6,200 张鸟类保护监测 生态环境评估点击查看
🚁 无人机计算机视觉数据集7,000 张空域安全监管 无人机反制系统点击查看
🛡️ Aerial_Tank_Images 坦克目标检测数据集2,200 张军事目标识别与侦查 卫星遥感目标识别点击查看
♻️ 塑料可回收物检测数据集10,000 张智能垃圾分类系统 环保回收自动化点击查看
🏢 建筑物实例分割数据集9,700 张城市规划与发展 智慧城市管理点击查看
😊 人脸情绪检测数据集9,400 张智能客服系统 在线教育平台点击查看
🔍 红外人员车辆检测数据集53,000 张智能安防监控系统 边境安全防控点击查看
🚗 停车空间检测数据集3,100 张实时车位导航系统 智能停车收费管理点击查看
♻ 垃圾分类检测数据集15,000 张智能垃圾分类 回收站与环保设施自动化点击查看
✂️ 石头剪刀布手势识别数据集3,100 张智能游戏系统 人机交互界面点击查看
🍌 腐烂香蕉检测数据集4,267张食品质量检测 智能农产品分拣系统点击查看
🎰 扑克牌数字检测数据集6,240 张智能扑克游戏系统 赌场监控与安全点击查看
🚗 车牌识别数据集12,658张智能交通管理系统 停车场自动化管理点击查看
🏗️ 建筑设备检测数据集6,247张智能工地管理 施工安全监控点击查看
🦺 个人防护装备检测数据集7,892 张工业安全监控 建筑工地安全管理点击查看
⚓ 船舶检测数据集7,542张海洋交通监管 港口智能化管理点击查看
🚁 空中救援任务数据集6,742张自然灾害应急救援 海上搜救任务点击查看
✈️ 固定翼无人机检测数据集8,247张空域安全监管 机场反无人机系统点击查看
😷 口罩检测数据集8,432张公共场所监控系统 企业复工防疫管理点击查看
🚁 无人机检测数据集6,847张机场空域安全管理 重要设施防护监控点击查看
✂️ 剪刀石头布手势识别数据集2,376张智能游戏开发 儿童教育娱乐点击查看
🦺 安全背心识别数据集4,892张建筑工地安全监管 工业园区智能巡检点击查看
🥤 饮料容器材质检测数据集6,342张智能垃圾分拣系统 生产线质量检测点击查看
🚚 物流运输场景数据集7,854张智能仓储管理系统 物流车队智能调度点击查看
🌡️ 热成像数据集9,127张夜间安防监控 工业设备检测点击查看
🚗 车辆损伤识别数据集6,742 张保险理赔自动化 智能汽车维修评估点击查看
🃏 扑克牌牌面识别数据集8,432 张智能扑克游戏系统 线上扑克直播辅助点击查看
🔴 围棋棋子检测数据集8,247 张智能围棋对弈系统 围棋教学平台点击查看
🚀 火箭检测数据集6,425 张航天发射监测 军事情报分析点击查看
⚡ 摔跤跌倒检测数据集9,354 张体育安全监测系统 智能运动防护设备点击查看
🚗 PKLot停车位检测数据集12,416 张计算机视觉 停车位检测点击查看
🚗 车辆分类数据集28,045 张车辆识别 交通工具点击查看
🚦 道路标识检测数据集2,893 张道路标识识别 自动驾驶点击查看
📦 集装箱侧面分类数据集2,408 张集装箱识别 港口物流点击查看
🚦 交通与道路标识检测数据集10,000张交通标志识别 自动驾驶点击查看
🎯 COCO数据集123,272张目标检测 COCO点击查看
👥 人群检测数据集7,300张人流统计 行人检测点击查看
🔢 MNIST手写数字识别数据集70,000张图像分类 手写识别点击查看
🐦 鸟类物种识别数据集9,880张鸟类识别 生态保护点击查看
🩺 皮肤癌检测数据集9,900张皮肤癌检测 医学影像点击查看
🚗 汽车颜色分类数据集2,004张汽车识别 颜色检测点击查看
⚔️ 暴力与非暴力行为识别数据集10,000张行为识别 暴力检测点击查看
🌿 植物病害检测数据集5,500张农业AI 植物病害识别点击查看
🧠 脑肿瘤检测数据集9,900张医学影像 脑肿瘤识别点击查看
🏀 篮球场景目标检测数据集4,100张体育AI 篮球分析点击查看
⚽ 足球场景目标检测数据集6,700张体育AI 足球分析点击查看
🗑️ 垃圾分类检测数据集10,464张垃圾分类 环保科技点击查看
🚁 无人机检测数据集9,495张无人机识别 低空安全点击查看
😊 人类面部情绪识别数据集9,400张情绪识别 人脸识别点击查看
🔥 烟雾与火灾检测数据集536张火灾检测 烟雾识别点击查看
🔥 火灾检测计算机视觉数据集10,967张火灾检测 火灾预警点击查看
🌐 网站截图计算机视觉数据集1,286张网页分析 UI自动化点击查看

📌 每篇文章附带模型指标、训练思路与推理部署建议,欢迎点赞收藏支持~

在这里插入图片描述

🛣️ 车道线实例分割数据集介绍

📌 数据集概览

本项目是专注于道路车道线智能识别的计算机视觉数据集,共包含 1,610 张真实驾驶场景图像,主要用于训练深度学习模型对道路上的实线、虚线、左侧边界、右侧边界等车道线进行像素级实例分割,实现高精度车道结构提取与语义理解。

  • 图像数量:1,610 张
  • 类别数:4 类
  • 适用任务:实例分割(Instance Segmentation)
  • 适配模型:YOLOv8-Seg、Mask R-CNN、U-Net、DeepLabV3+ 等主流分割框架

包含类别

类别描述
Left Boundary (Dashed)左侧虚线边界
Left Boundary (Solid)左侧实线边界
Right Boundary (Dashed)右侧虚线边界
Right Boundary (Solid)右侧实线边界

数据集覆盖城市道路、高速公路、乡村公路、弯道、夜间、雨雪等多种复杂场景,能够显著提升模型在多变环境下的车道线识别精度与鲁棒性。

🎯 应用场景

该数据集非常适用于以下自动驾驶与智能交通领域:

  • 自动驾驶辅助系统(ADAS)
    精确识别车道边界,支持车道保持、自动变道、偏离预警等功能。

  • 高精地图构建与更新
    自动化提取车道线几何信息,辅助构建和动态更新高精度路网地图。

  • 智能交通监控
    辅助分析违规压线、越线行驶、非法变道等行为。

  • 道路养护与巡检
    用于识别磨损、褪色、缺失的车道线,辅助养护决策。

  • 无人机/车载视频分析
    支持航拍或行车记录仪图像自动识别车道结构,提高巡查效率。

  • 学术研究与竞赛
    作为车道线分割基准数据集,适合高校科研、算法比赛与模型评测。

🖼 数据样本展示

以下展示部分数据集内的样本图片(均带有车道线实例分割掩码):
在这里插入图片描述
在这里插入图片描述

数据集图像特点:

  • 多场景覆盖:城市主干道、高速匝道、乡村土路、弯道、交叉口等
  • 多样光照条件:白天、黄昏、夜间、阴天、强光反射、雨雪天气等
  • 复杂背景干扰:路边植被、行人、车辆、广告牌、阴影遮挡、路面污损等
  • 高分辨率标注:像素级精确边界,支持毫米级几何分析
  • 真实驾驶视角:多数图像来自车载摄像头,贴近实际应用需求

场景涵盖不同天气、时段、地形地貌,数据多样性优秀,特别适合训练鲁棒性强的车道线分割模型。

使用建议

  1. 数据预处理优化

    • 标准化图像尺寸(推荐640x640或832x832)
    • 应用针对道路图像的数据增强:旋转、缩放、亮度调整、模拟雨雾、添加噪声
    • 对细小或模糊车道线可采用局部放大或边缘增强预处理
  2. 模型训练策略

    • 利用在Cityscapes或COCO上预训练的模型进行迁移学习
    • 启用多尺度训练以适应不同宽度和曲率的车道线
    • 考虑使用注意力机制(如CBAM)强化边缘特征提取
  3. 实际部署考虑

    • 边缘设备优化:轻量化模型部署至车载终端或嵌入式设备
    • 实时推理能力:确保单帧处理时间<50ms,满足自动驾驶响应需求
    • GPU加速部署:在服务器端实现批量图像高效处理
  4. 应用场景适配

    • 自动驾驶系统集成:输出车道线掩码供路径规划与控制模块使用
    • 云端API服务:提供RESTful接口支持在线图像上传与结果返回
    • 移动端可视化:支持手机APP查看车道线提取结果与叠加导航地图
  5. 性能监控与改进

    • 建立按车道线类型(实线/虚线、左/右)的mAP@50细分指标
    • 收集漏检/误检样本(如暗部车道线、被遮挡线段、褪色标线)进行模型强化
    • 定期更新新增场景数据(如新建道路、施工路段、冬季积雪道路)

🌟 数据集特色

  • 高质量标注:专业标注团队参与,确保车道线边界精准无误
  • 真实世界复杂性:包含遮挡、阴影、反光、低对比度、磨损等现实挑战
  • 四类精细划分:区分左右边界及实线/虚线,支持精细化车道理解
  • 技术兼容性:支持主流深度学习框架与部署平台
  • 性能优异:配套模型在测试集上达到 mAP@50 = 88.1%

📈 商业价值

该数据集在以下商业领域具有重要价值:

  • 自动驾驶公司:提升感知系统对车道结构的识别精度与稳定性
  • 高精地图服务商:自动化生成车道线数据,降低人工采集成本
  • 智能交通解决方案商:构建智能路网监测与管理平台
  • 汽车零部件厂商:用于开发L2/L3级自动驾驶辅助系统
  • 道路养护企业:辅助识别病害标线,优化养护资源分配

🔗 技术标签

计算机视觉 实例分割 车道线检测 自动驾驶 ADAS YOLOv8-Seg Mask R-CNN 智能交通 高精地图 道路巡检


注意: 本数据集适用于研究、教育和商业用途。使用时请确保符合地理信息数据安全与隐私保护相关法规。建议在实际应用中结合专业测绘或交通工程师意见进行结果校验与修正。

YOLOv8 训练实战

本教程介绍如何使用 YOLOv8 对目标进行识别与检测。涵盖环境配置、数据准备、训练模型、模型推理和部署等全过程。


📦 1. 环境配置

建议使用 Python 3.8+,并确保支持 CUDA 的 GPU 环境。

# 创建并激活虚拟环境(可选)
python -m venv yolov8_env
source yolov8_env/bin/activate  # Windows 用户使用 yolov8_env\Scripts\activate

安装 YOLOv8 官方库 ultralytics

pip install ultralytics

📁 2. 数据准备

2.1 数据标注格式(YOLO)

每张图像对应一个 .txt 文件,每行代表一个目标,格式如下:

<class_id> <x_center> <y_center> <width> <height>

所有值为相对比例(0~1)。

类别编号从 0 开始。

2.2 文件结构示例

datasets/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

2.3 创建 data.yaml 配置文件

path: ./datasets
train: images/train
val: images/val

nc: 11
names: ['Bent_Insulator', 'Broken_Insulator_Cap', '', ...]

🚀 3. 模型训练

YOLOv8 提供多种模型:yolov8n, yolov8s, yolov8m, yolov8l, yolov8x。可根据设备性能选择。

yolo detect train \
  model=yolov8s.pt \
  data=./data.yaml \
  imgsz=640 \
  epochs=50 \
  batch=16 \
  project=weed_detection \
  name=yolov8s_crop_weed
参数类型默认值说明
model字符串-指定基础模型架构文件或预训练权重文件路径(.pt/.yaml
data字符串-数据集配置文件路径(YAML 格式),包含训练/验证路径和类别定义
imgsz整数640输入图像的尺寸(像素),推荐正方形尺寸(如 640x640)
epochs整数100训练总轮次,50 表示整个数据集会被迭代 50 次
batch整数16每个批次的样本数量,值越大需要越多显存
project字符串-项目根目录名称,所有输出文件(权重/日志等)将保存在此目录下
name字符串-实验名称,用于在项目目录下创建子文件夹存放本次训练结果

关键参数补充说明:

  1. model=yolov8s.pt

    • 使用预训练的 YOLOv8 small 版本(平衡速度与精度)
    • 可用选项:yolov8n.pt(nano)/yolov8m.pt(medium)/yolov8l.pt(large)
  2. data=./data.yaml

    # 典型 data.yaml 结构示例
    path: ../datasets/weeds
    train: images/train
    val: images/val
    names:
      0: Bent_Insulator
      1: Broken_Insulator_Cap
      2: ...
      3: ...
    

📈 4. 模型验证与测试

4.1 验证模型性能

yolo detect val \
  model=runs/detect/yolov8s_crop_weed/weights/best.pt \
  data=./data.yaml
参数类型必需说明
model字符串要验证的模型权重路径(通常为训练生成的 best.ptlast.pt
data字符串与训练时相同的 YAML 配置文件路径,需包含验证集路径和类别定义

关键参数详解

  1. model=runs/detect/yolov8s_crop_weed/weights/best.pt

    • 使用训练过程中在验证集表现最好的模型权重(best.pt
    • 替代选项:last.pt(最终epoch的权重)
    • 路径结构说明:
      runs/detect/
      └── [训练任务名称]/
          └── weights/
              ├── best.pt   # 验证指标最优的模型
              └── last.pt   # 最后一个epoch的模型
      
  2. data=./data.yaml

    • 必须与训练时使用的配置文件一致
    • 确保验证集路径正确:
      val: images/val  # 验证集图片路径
      names:
        0: crop
        1: weed
      

常用可选参数

参数示例值作用
batch16验证时的批次大小
imgsz640输入图像尺寸(需与训练一致)
conf0.25置信度阈值(0-1)
iou0.7NMS的IoU阈值
device0/cpu选择计算设备
save_jsonTrue保存结果为JSON文件

典型输出指标

Class     Images  Instances      P      R      mAP50  mAP50-95
all        100       752      0.891  0.867    0.904    0.672
crop       100       412      0.912  0.901    0.927    0.701
weed       100       340      0.870  0.833    0.881    0.643

4.2 推理测试图像

yolo detect predict \
  model=runs/detect/yolov8s_crop_weed/weights/best.pt \
  source=./datasets/images/val \
  save=True

🧠 5. 自定义推理脚本(Python)

from ultralytics import YOLO
import cv2

# 加载模型
model = YOLO('runs/detect/yolov8s_crop_weed/weights/best.pt')

# 推理图像
results = model('test.jpg')

# 可视化并保存结果
results[0].show()
results[0].save(filename='result.jpg')

🛠 6. 部署建议

✅ 本地运行:通过 Python 脚本直接推理。

🌐 Web API:可用 Flask/FastAPI 搭建检测接口。

📦 边缘部署:YOLOv8 支持导出为 ONNX,便于在 Jetson、RKNN 等平台上部署。

导出示例:

yolo export model=best.pt format=onnx

📌 总结流程

阶段内容
✅ 环境配置安装 ultralytics, PyTorch 等依赖
✅ 数据准备标注图片、组织数据集结构、配置 YAML
✅ 模型训练使用命令行开始训练 YOLOv8 模型
✅ 验证评估检查模型准确率、mAP 等性能指标
✅ 推理测试运行模型检测实际图像目标
✅ 高级部署导出模型,部署到 Web 或边缘设备

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值