# -*- coding: utf-8 -*-
"""
Created on Fri Jun 12 16:20:17 2020
@author: weiping
"""
import xgboost as xgb
import lightgbm as lgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import *
from sklearn.datasets import load_iris
iris = load_iris()
data_x = iris.data
data_y = iris.target
x_tr,x_te,y_tr,y_te = train_test_split(data_x,data_y,train_size = 0.7,random_state =22)
#XGBboost模型
xgb_model = xgb.XGBClassifier()
xgb_model.fit(x_tr,y_tr)
xgb_predict = xgb_model.predict(x_te)
print("xgb准确率:" ,str(xgb_model.score(x_te,y_te)))
#print("roc_auc_score:",str(roc_auc_score(y_te,xgb_predict))) 不支持多分类
print("precision_score:",str(precision_score(y_te,xgb_predict,average = 'weighted')))
print("recall_score:" , str(recall_score(y_te,xgb_predict,average = 'weighted')))
print("f1_score:",str(f1_score(y_te,xgb_predict,average = 'weighted')))
'''
xgb准确率: 0.9333333333333333
precision_score: 0.9344662309368191
recall_score: 0.9333333
python|LightGBM模型
最新推荐文章于 2025-10-17 15:08:16 发布
本文详细介绍了如何在Python中使用LightGBM进行机器学习建模,包括数据预处理、模型训练、参数调优及模型评估等关键步骤。LightGBM作为一款高效的梯度提升框架,以其速度快、内存占用低和准确度高等特点深受数据科学家喜爱。

最低0.47元/天 解锁文章
4140

被折叠的 条评论
为什么被折叠?



