from sklearn.tree import DecisionTreeClassifier #分类
from sklearn.tree import DecisionTreeRegressor #回归
import pandas as pd
import numpy as np
import sklearn.datasets as skdata
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
#from sklearn.metrics import mean_squared_error,r2_score
from sklearn import metrics#模型结果评价包
'''分类'''
data_x,data_y = skdata.load_iris().data, skdata.load_iris().target
df = pd.DataFrame(data_x,columns = list('abcd'))
df['f'] = data_y
#dff = df[df['f'] < 2]
x_tr,x_te,y_tr,y_te = train_test_split(df[list('abcd')],df['f'],train_size = 0.7,random_state =22)
tree = DecisionTreeClassifier()
tree.fit(x_tr,y_tr)
tree_p = tree.predict(x_te)
metrics.roc_auc_score(y_te,tree_p)
metrics.confusion_matrix(y_te,tree_p)
'''回归'''
d_x ,d_y = skdata.load_boston().data,skdata.load_boston().target
x_tr,x_te,y_tr,y_te = train_test_split(d_x,d_y,train_size = 0.7,random_state = 22)
tree_r = Deci
python|决策树(DecisionTreeClassifier)
最新推荐文章于 2024-03-26 15:47:14 发布
本文深入探讨了Python中scikit-learn库的决策树分类器(DecisionTreeClassifier),包括模型参数解析及其在机器学习中的应用。

最低0.47元/天 解锁文章
726

被折叠的 条评论
为什么被折叠?



