自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 资源 (3)
  • 收藏
  • 关注

原创 matlab legend函数

http://www.mathworks.com/help/matlab/ref/legend.html

2015-05-15 14:49:54 1032

原创 LTE-自适应调制和编码(AMC)

1)自适应调制编码内容:CQI、PMI和RI的测量,上行反馈CQI、PMI和RI,调制编码信息的获取。自适应调制和编码就是根据信道条件的变化,动态的选择适当的调制和编码方式(MCS)。包括(a)频率特定的AMC:对分配给一个用户的不同的频率资源采用不同的AMC;优点:该方法可更好的适应频率选择性信道,理论上可实现最大的系统容量。缺点:需对每个RB测量并反馈CQI,带来较大的

2015-05-11 10:58:10 13043

原创 LTE-接收端信号处理

1)SNR estimation:if LTE_params.SNR_estimation [S_plus_noise_power N_power] = LTE_SNR_estimator(LTE_params,y_rx_unsync); Noise_power = sum(mean(N_power,1)); Signal_power = su

2015-05-10 10:25:00 1505

原创 LTE-发送端信号处理

本文详细描述了LTE下行链路发送端的信号处理过程。

2015-05-09 11:13:56 2506

原创 LTE-预留PBCH信道

PBCH(物理广播信道):所占用的资源粒子为:\[\begin{array}{c}k = \frac{{N_{{\rm{RB}}}^{{\rm{DL}}}N_{{\rm{sc}}}^{{\rm{RB}}}}}{2} - 36 + k',{\rm{      }}k' = 0,1,...,71\\l = 0,1,...,3\end{array}\]

2015-05-09 11:02:38 1083

原创 LTE-同步信号

同步信号包括(1)主同步信号(2)辅同步信号1)主同步信号:用于小区组内侦测,符号timing对准,频率同步2)辅同步信号:用于小区组侦测,帧timing对准,CP长度侦测共有504个唯一的小区标识,物理层小区标志分成168个唯一的物理层小区标识组,每一个小组包含3个唯一标识。这个分组中每一个物理小区标识是该分组的一部分,并且只有一个物理层标识组。物理层小区标识组\(N_{{\

2015-05-08 20:31:49 8260

原创 LTE-产生参考信号和同步信号

小区专用参考信号(用于信道估计)1)参考信号在一个时隙内占据的资源栗子数switch nTX    case 1        no_refsym_per_slot = 4;    case 2        no_refsym_per_slot = 8;    case 4        no_refsym_per_slot = 12;    otherwis

2015-05-08 19:24:13 4735

原创 LTE-层映射和预编码

LTE协议将天线映射分成了连部分操作:(1)层映射(2)预编码1)层映射传输的每个码字的复值调制符号映射到一个或多个层。输入参数:\[{d^{\left( q \right)}}(0),...,{d^{\left( q \right)}}(M_{{\rm{symb}}}^{\left( q \right)} - 1)\]输出参数:\[x(i) = {\left[ {\b

2015-05-08 15:34:34 11268 1

原创 LTE 参数

首先定义资源块:LTE_params.SubcarrierSpacing = 15e3; % in Hz, 15 kHz, also 7.5 kHz subcarrier spacing possible, just for MBSFN-based multicast/broadcast transmissionsLTE_params.ResourceBlock = 180e3; % f

2015-05-08 10:17:12 1550

原创 LTE uplink迭代检测(二)

1)软符号值计算(soft-symbol)    1.1)根据译码器反馈回来的每比特似然值计算每比特的概率\[\Pr \left( {b_{j,k}^{\left( i \right)} =  + 1} \right) = \frac{1}{2} + \frac{1}{2}\tanh \left( {\frac{1}{2}L_{j,k}^{\left( i \right)}} \right

2015-04-27 08:03:09 709

原创 LTE-uplink迭代检测(二)

算法描述:1)软符号值计算(soft-symbol)        根据译码器反馈回来的每比特的外信息计算每比特的概率            \[\Pr \left( {b_{j,k}^{\left( i \right)} =  + 1} \right) = \frac{1}{2} + \frac{1}{2}\tanh \left( {\frac{1}{2}L_{j,k}^{\left

2015-04-24 14:16:11 700

原创 LTE-uplink 迭代检测

LTE上行链路迭代检测系统模型:其频域模型为:对于第w个子载波而言,上述模型等效于\[{{\bf{y}}_w} = \left( \begin{array}{l}y_w^{\left( 1 \right)}\\y_w^{\left( 2 \right)}\\\; \vdots \\y_w^{\left( B \right)}\end{array} \

2015-04-24 10:04:50 721

原创 Matlab条形图中填充图案

问题:在绘制条形图时,Matlab默认以颜色区分不同的立柱,然而现实中我们偶尔会需要用填充图案来进行区分,如下图所示。利用代码hatchfill.m可以实现上述需求,代码下载链接点击打开链接调用方式为:h=bar([tot11,tot12,tot13,tot14,tot15;tot21,tot22,tot23,tot24,tot25]);hp = findobj(h,'ty

2015-04-23 20:47:25 22866 8

2009-Implementation of a Markov Chain Monte Carlo based multiuser MIMO detector

对MCMC实现MIMOIn this paper, we develop novel Bayesian detection methods that are applicable to both synchronous code-division multiple-access and multiple-input multiple-output communication systems. Markov chain Monte Carlo (MCMC) simulation techniques are used to obtain Bayesian estimates (soft information) of the transmitted symbols. Unlike previous reports that widely use statistical inference to estimate a posteriori probability (APP) values, we present alternative statistical methods that are developed by viewing the underlying problem as a multidimensional Monte Carlo integration. We show that this approach leads to results that are similar to those that would be obtained through a proper Rao–Blackwellization technique and thus conclude that our proposed methods are superior to those reported in the literature.We also note that when the channel signal-to-noise ratio is high, MCMC simulator experiences some very slow modes of convergence. Thus accurate estimation of APP values requires simulations of very long Markov chains, which may be infeasible in practice. We propose two solutions to this problem using the theory of importance sampling. Extensive computer simulations show that both solutions improve the system performance greatly. We also compare the proposed MCMC detection algorithms with the sphere decoding and minimum mean square error turbo detectors and show that the MCMC detectors have superior performance.

2013-11-19

LTE-physical

详细描述了LTE协议的物理层,包括上下行链路和OFDM、SC-OFDM的区别

2015-05-10

Gibbs sampling

Gibbs 采样和马尔科夫-Monte卡洛模型,以及一系列的仿真和代码

2013-11-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除