转自百度百科 交叉编译的概念

本文介绍了交叉编译的概念及其应用场景,解释了为何在嵌入式系统开发中需要使用交叉编译,同时对比了交叉编译与本机编译的区别。文章还详细列举了几种常见的交叉编译实例。

交叉编译呢,简单地说,就是在一个平台上生成另一个平台上的可执行代码。这里需要注意的是所谓 平台,实际上包含两个概念:体系结构(Architecture)、操作系统(Operating System)。同一个体系结构可以运行不同的操作系统;同样,同一个操作系统也可以在不同的体系结构上运行。举例来说,我们常说的x86 Linux平台实际上是Intel x86体系结构和Linux for x86操作系统的统称;而x86 WinNT平台实际上是Intel x86体系结构和Windows NT for x86操作系统的简称。

一个经常会被问到的问题就是,“既然我们已经有了主机 编译器,那为什么还要交叉编译呢?”其实答案很简单,没办法啊!有时是因为目的平台上不允许或不能够安装我们所需要的编译器,而我们又需要这个编译器的某些特征;有时是因为目的平台上的资源贫乏,无法运行我们所需要编译器;有时又是因为目的平台还没有建立,连 操作系统都没有,根本谈不上运行什么编译器。
另一个经常会被问到的问题就是:“既然可以交叉编译,那还要主机编译干吗?”其实答案也很简单,交叉编译是 不得已而为之!与主机编译相比,交叉编译受的限制更多,虽然在理论上我们可以做任何形式的交叉编译,但事实上,由于受到专利、版权、技术的限制,并不总是能够进行交叉编译,尤其是在业余条件下!举例来说,我们至今无法生成 惠普公司专有的som格式的 可执行文件,因此我们根本无法做目的平台为HPPA-HPUX的交叉编译。
就我们这个项目而言,需要交叉编译的原因有两个:首先,在项目的起始阶段,目的平台尚未建立,因此需要做交叉编译,以生成我们所需要的bootloader(启动引导代码)以及 操作系统核心;其次,当目的平台能启动之后,由于目的平台上资源的限制,当我们编译大型程序时,依然可能需要用到交叉编译。
交叉编译这个概念的出现和流行是和 嵌入式系统的广泛发展同步的。我们常用的 计算机软件,都需要通过编译的方式,把使用高级 计算机语言编写的代码(比如C代码)编译(compile)成计算机可以识别和执行的 二进制代码。比如,我们在Windows平台上,可使用 Visual C++ 开发环境,编写程序并编译成可执行程序。这种方式下,我们使用PC平台上的Windows工具开发针对Windows本身的可执行程序,这种编译过程称为native compilation,中文可理解为本机编译。然而,在进行 嵌入式系统的开发时,运行程序的目标平台通常具有有限的 存储空间和运算能力,比如常见的 ARM 平台,其一般的静态存储空间大概是16到32MB,而CPU的主频大概在100MHz到500MHz之间。这种情况下,在ARM平台上进行本机编译就不太可能了,这是因为一般的编译工具链(compilation tool chain)需要很大的 存储空间,并需要很强的CPU运算能力。为了解决这个问题,交叉编译工具就应运而生了。通过交叉编译工具,我们就可以在CPU能力很强、 存储空间足够的主机平台上(比如PC上)编译出针对其他平台的可执行程序。
要进行交叉编译,我们需要在主机平台上安装对应的交叉编译工具链(cross compilation tool chain),然后用这个交叉编译工具链编译我们的 源代码,最终生成可在目标平台上运行的代码。常见的交叉编译例子如下:
1、在Windows PC上,利用ADS(ARM  开发环境),使用armcc 编译器,则可编译出针对ARM CPU的 可执行代码
2、在Linux PC上,利用arm-linux-gcc 编译器,可编译出针对Linux ARM平台的 可执行代码
3、在Windows PC上,利用cygwin环境,运行arm-elf-gcc 编译器,可编译出针对ARM CPU的 可执行代码

在做实际工作之前,我想我们应该先掌握一些关于交叉编译的基本知识,其实说白了也就是理解一些我们经常会碰到的英文单词:
宿主机(host) :编辑和 编译程序的平台,一般是基于X86的PC机,通常也被称为主机。
目标机(target):用户开发的系统,通常都是非X86平台。host编译得到的 可执行代码在target上运行。
prefix:  交叉编译器的安装位置。
xxx-xxxx-xxxxx 平台描述。
我们在 主机平台上开发程序,并在这个平台上运行 交叉编译器,编译我们的程序;而由交叉编译器生成的程序将在目的平台上运行。这里值得说明得是平台描述,象arm-linux、i386-pc-linux2.4.3这样的字符串我们经常会看到,其实它是用来描述平台的,它有完整格式、缩减格式和别名之分。完整格式是:CPU-制造厂商- 操作系统,如sparc-sun-sunos4.1.4,说明平台所使用的CPU是sparc,制造厂商是sun,上面运行的操作系统是SunOS,版本是4.1.4。当然,我们都不愿记这么长的东西,因此可以使用短格式,短格式中有选择地去除了制造厂商、 软件版本等信息,因此我们同样可以用sparc-sunos或sparc-sunos-sunos4来描述这个平台。如果觉得这个还是太麻烦,那就可以使用别名,sun4m就可以很简单地描述这个平台。需要注意的是,并不是所有的平台都有别名,也不是所有的短格式都可以正确地描述平台

计及风电并网运行的微电网及集群电动汽车综合需求侧响应的优化调度策略研究(Matlab代码实现)内容概要:本文研究了计及风电并网运行的微电网及集群电动汽车综合需求侧响应的优化调度策略,并提供了基于Matlab的代码实现。研究聚焦于在高渗透率可再生能源接入背景下,如何协调微电网内部分布式电源、储能系统与大规模电动汽车充电负荷之间的互动关系,通过引入需求侧响应机制,建立多目标优化调度模型,实现系统运行成本最小化、可再生能源消纳最大化以及电网负荷曲线的削峰填谷。文中详细阐述了风电出力不确定性处理、电动汽车集群充放电行为建模、电价型与激励型需求响应机制设计以及优化求解算法的应用。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源、微电网、电动汽车等领域技术研发的工程师。; 使用场景及目标:①用于复现相关硕士论文研究成果,深入理解含高比例风电的微电网优化调度建模方法;②为开展电动汽车参与电网互动(V2G)、需求侧响应等课题提供仿真平台和技术参考;③适用于电力系统优化、能源互联网、综合能源系统等相关领域的教学与科研项目开发。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注模型构建逻辑与算法实现细节,同时可参考文档中提及的其他相关案例(如储能优化、负荷预测等),以拓宽研究视野并促进交叉创新。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值