记(java数据结构与算法之顺序表与链表深入分析)

本文详细对比了顺序表和链表这两种基本数据结构的特点,包括它们的优点、缺点及适用场景,尤其针对插入和删除操作进行了深入分析。

根据http://blog.youkuaiyun.com/javazejian/article/details/52953190  来写的

分清一个概念


什么是ADT抽象数据类型(ADT,Abstract Data Type),

常用的ADT包含链表、栈、队列、优先队列、二叉树、散列表、图等,

存取任何一个元素的时间复杂度为O(1)的数据结构称之为随机存取结构


 //他的代码这点是 做了一个 <span style="font-family: 'microsoft yahei';">boolean done=false;  标记, 这样就方便清楚全部与data相同的元素了 </span>
@Override
public boolean removeAll(T data) {
    boolean done=false;
    if (this.length!=0 && data!=null)
    {
        int i=0;
        while (i<this.length)
            //找出数据相同的选项
            if (data.equals(this.table[i]))
            {
                this.remove(i);//根据下标删除
                done = true;
            }
            else
                i++;//继续查找
    }
    return done;  
}

顺序表

  • 优点

    • 使用数组作为内部容器简单且易用

    • 在访问元素方面效率高

    • 数组具有内存空间局部性的特点,由于本身定义为连续的内存块,所以任何元素与其相邻的元素在物理地址上也是相邻的。

  • 缺点

    • 内部数组大小是静态的,在使用前必须指定大小,如果遇到容量不足时,需动态拓展内部数组的大小,会造成额外的时间和空间开销

    • 在内部创建数组时提供的是一块连续的空间块,当规模较大时可能会无法分配数组所需要的内存空间

    • 顺序表的插入和删除是基于位置的操作,如果需要在数组中的指定位置插入或者删除元素,可能需要移动内部数组中的其他元素,这样会造成较大的时间开销,时间复杂度为O(n)
链表

由于单链表并不是随机存取结构,即使单链表在访问第一个结点时花费的时间为常数时间,但是如果需要访问第i(0<i<n)个结点,需要从头结点head开始遍历部分链表,进行i次的p=p.next操作,这点从上述的图文分析我们也可以看出,这种情况类似于前面计算顺序表需要平均移动元素的总数,因此链表也需要平均进行 n2 次的p=p.next操作,也就是说get(i)和set(i,x)的时间复杂度都为O(n)。 
  由于链表在插入和删除结点方面十分高效的,因此链表比较适合那些插入删除频繁的场景使用,单纯从插入操作来看,我们假设front指向的是单链表中的一个结点,此时插入front的后继结点所消耗的时间为常数时间O(1),但如果此时需要在front的前面插入一个结点或者删除结点自己时,由于front并没有前驱指针,单凭front根本无法知道前驱结点,所以必须从链表的表头遍历至front的前一个结点再执行插入或者删除操作,而这个查询操作所消耗的时间为O(n),因此在已知front结点需要插入前驱结点或者删除结点自己时,消耗的时间为O(n)。当然这种情况并不是无法解决的,后面我们要分析到的双链表就可以很好解决这个问题,双链表是每个结点都同时拥有前后继结点的链表,这样的话上面的问题就迎刃而解了。上述是从已知单链表中front结点的情况下讨论的单链表的插入删除效率。 
  我们可能会有个疑问,从前面单链表的插入删除的代码实现上来说,我们并不知道front结点的,每次插入和删除结点,都需要从表头开始遍历至要插入或者删除结点的前一个结点,而这个过程所花费的时间和访问结点所花费的时间是一样的,即O(n), 
也就是说从实现上来说确实单链表的插入删除操作花费时间也是O(n),而顺序表插入和删除的时间也是O(n),那为什么说单链表的插入和删除的效率高呢?这里我们要明白的是链表的插入和删除之所以是O(N),是因为查询插入点所消耗的,找到插入点后插入操作消耗时间只为O(1),而顺序表查找插入点的时间为O(1),但要把后面的元素全部后移一位,消耗时间为O(n)。问题是大部分情况下查找所需时间比移动短多了,还有就是链表不需要连续空间也不需要扩容操作,因此即使时间复杂度都是O(n),所以相对来说链表更适合插入删除操作。

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值