Git——初说

本文介绍了Git这一开源分布式版本控制软件的基础知识,对比了集中式与分布式版本控制系统的特点,并阐述了Git的优势,包括适合分布式开发、速度快、灵活的分支管理及离线工作的能力。

    小咸儿再接触一个新的Java项目的时候,接触了一个新的有关版本控制的软件,那就是Git。

    那么就先来看看Git的真面目是什么吧!!

  •     简介:

    Git是一个开源的分布式版本控制系统,可以有效、高速的处理从很小到非常大的项目版本管理。Git 是 Linus Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制软件。

    而Git是分布式版本控制系统,集中式和分布式版本控制系统有什么区别呢?

    先说集中式版本控制系统,版本库是集中存放在中央服务器的,而干活的时候,用的都是自己的电脑,所以要先从中央服务器取得最新的版本,然后开始干活,干完活了,再把自己的活推送给中央服务器。中央服务器就好比是一个图书馆,你要改一本书,必须先从图书馆借出来,然后回到家自己改,改完了,再放回图书馆。
这里写图片描述

    集中式版本控制系统最大的问题就是必须联网才能工作,如果不能连接到服务器上,基本上不可以工作,如果服务器不能连接上,就不能提交,还原,对比等等,除此之外,还有对服务器性能要求高,数据库容量经常暴增,体量大、不适合开源开发、分支的管控方式不灵活。

    那分布式版本控制系统与集中式版本控制系统有何不同呢?首先,分布式版本控制系统根本没有“中央服务器”,每个人的电脑上都是一个完整的版本库,这样,你工作的时候,就不需要联网了,因为版本库就在你自己的电脑上。既然每个人电脑上都有一个完整的版本库,那多个人如何协作呢?比方说你在自己电脑上改了文件A,你的同事也在他的电脑上改了文件A,这时,你们俩之间只需把各自的修改推送给对方,就可以互相看到对方的修改了。

    和集中式版本控制系统相比,分布式版本控制系统的安全性要高很多,因为每个人电脑里都有完整的版本库,某一个人的电脑坏掉了不要紧,随便从其他人那里复制一个就可以了。而集中式版本控制系统的中央服务器要是出了问题,所有人都没法干活了。

在实际使用分布式版本控制系统的时候,其实很少在两人之间的电脑上推送版本库的修改,因为可能你们俩不在一个局域网内,两台电脑互相访问不了,也可能今天你的同事病了,他的电脑压根没有开机。因此,分布式版本控制系统通常也有一台充当“中央服务器”的电脑,但这个服务器的作用仅仅是用来方便“交换”大家的修改,没有它大家也一样干活,只是交换修改不方便而已。

这里写图片描述

  •     Git优点

    那么Git的优点有什么呢?

1.适合分布式开发,每一个个体都可以作为服务器。每一次Clone就是从服务器上pull到了所有的内容,包括版本信息。

2.公共服务器压力和数据量都不会太大。

3.速度快、灵活,分支之间可以任意切换。

4.任意两个开发者之间可以很容易的解决冲突,并且单机上就可以进行分支合并。

5.离线工作,不影响本地代码编写,等有网络连接以后可以再上传代码,并且在本地可以根据不同的需要,本地新建自己的分支。

    推荐干货:

    廖雪锋——Git教程

    接下来小咸儿会在今后的操作使用中,不断的更新Git的相关问题。

内容概要:本文围绕EKF SLAM(扩展卡尔曼滤波同步定位与地图构建)的性能展开多项对比实验研究,重点分析在稀疏与稠密landmark环境下、预测与更新步骤同时进行与非同时进行的情况下的系统性能差异,并进一步探讨EKF SLAM在有色噪声干扰下的鲁棒性表现。实验考虑了不确定性因素的影响,旨在评估不同条件下算法的定位精度与地图构建质量,为实际应用中EKF SLAM的优化提供依据。文档还提及多智能体系统在遭受DoS攻击下的弹性控制研究,但核心内容聚焦于SLAM算法的性能测试与分析。; 适合人群:具备一定机器人学、状态估计或自动驾驶基础知识的科研人员及工程技术人员,尤其是从事SLAM算法研究或应用开发的硕士、博士研究生和相关领域研发人员。; 使用场景及目标:①用于比较EKF SLAM在不同landmark密度下的性能表现;②分析预测与更新机制同步与否对滤波器稳定性与精度的影响;③评估系统在有色噪声等非理想观测条件下的适应能力,提升实际部署中的可靠性。; 阅读建议:建议结合MATLAB仿真代码进行实验复现,重点关注状态协方差传播、观测更新频率与噪声模型设置等关键环节,深入理解EKF SLAM在复杂环境下的行为特性。稀疏 landmark 与稠密 landmark 下 EKF SLAM 性能对比实验,预测更新同时进行与非同时进行对比 EKF SLAM 性能对比实验,EKF SLAM 在有色噪声下性能实验
内容概要:本文围绕“基于主从博弈的售电商多元零售套餐设计与多级市场购电策略”展开,结合Matlab代码实现,提出了一种适用于电力市场化环境下的售电商优化决策模型。该模型采用主从博弈(Stackelberg Game)理论构建售电商与用户之间的互动关系,售电商作为领导者制定电价套餐策略,用户作为跟随者响应电价并调整用电行为。同时,模型综合考虑售电商在多级电力市场(如日前市场、实时市场)中的【顶级EI复现】基于主从博弈的售电商多元零售套餐设计与多级市场购电策略(Matlab代码实现)购电组合优化,兼顾成本最小化与收益最大化,并引入不确定性因素(如负荷波动、可再生能源出力变化)进行鲁棒或随机优化处理。文中提供了完整的Matlab仿真代码,涵盖博弈建模、优化求解(可能结合YALMIP+CPLEX/Gurobi等工具)、结果可视化等环节,具有较强的可复现性和工程应用价值。; 适合人群:具备一定电力系统基础知识、博弈论步认知和Matlab编程能力的研究生、科研人员及电力市场从业人员,尤其适合从事电力市场运营、需求响应、售电策略研究的相关人员。; 使用场景及目标:① 掌握主从博弈在电力市场中的建模方法;② 学习售电商如何设计差异化零售套餐以引导用户用电行为;③ 实现多级市场购电成本与风险的协同优化;④ 借助Matlab代码快速复现顶级EI期刊论文成果,支撑科研项目或实际系统开发。; 阅读建议:建议读者结合提供的网盘资源下载完整代码与案例数据,按照文档目录顺序逐步学习,重点关注博弈模型的数学表达与Matlab实现逻辑,同时尝试对目标函数或约束条件进行扩展改进,以深化理解并提升科研创新能力。
内容概要:本文介绍了基于粒子群优化算法(PSO)的p-Hub选址优化问基于粒子群优化算法的p-Hub选址优化(Matlab代码实现)题的Matlab代码实现,旨在解决物流与交通网络中枢纽节点的最优选址问题。通过构建数学模型,结合粒子群算法的全局寻优能力,优化枢纽位置及分配策略,提升网络传输效率并降低运营成本。文中详细阐述了算法的设计思路、实现步骤以及关键参数设置,并提供了完整的Matlab仿真代码,便于读者复现和进一步改进。该方法适用于复杂的组合优化问题,尤其在大规模网络选址中展现出良好的收敛性和实用性。; 适合人群:具备一定Matlab编程基础,从事物流优化、智能算法研究或交通运输系统设计的研究生、科研人员及工程技术人员;熟悉优化算法基本原理并对实际应用场景感兴趣的从业者。; 使用场景及目标:①应用于物流中心、航空枢纽、快递分拣中心等p-Hub选址问题;②帮助理解粒子群算法在离散优化问题中的编码与迭代机制;③为复杂网络优化提供可扩展的算法框架,支持进一步融合约束条件或改进算法性能。; 阅读建议:建议读者结合文中提供的Matlab代码逐段调试运行,理解算法流程与模型构建逻辑,重点关注粒子编码方式、适应度函数设计及约束处理策略。可尝试替换数据集或引入其他智能算法进行对比实验,以深化对优化效果和算法差异的理解。
评论 28
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值