get anchor

from os import listdir
from os.path import isfile, join
import argparse
from PIL import Image
import numpy as np
import sys
import os
import shutil
import random
      

def IOU(x,centroids):
    dists = []
    for centroid in centroids:
        c_w,c_h = centroid
        w,h = x
        if c_w>=w and c_h>=h:
            dist = w*h/(c_w*c_h)
        elif c_w>=w and c_h<=h:
            dist = w*c_h/(w*h + (c_w-w)*c_h)
        elif c_w<=w and c_h>=h:
            dist = c_w*h/(w*h + c_w*(c_h-h))
        else: #means both w,h are bigger than c_w and c_h respectively
            dist = (c_w*c_h)/(w*h)
        dists.append(dist)
    return np.array(dists)

def avg_IOU(X,centroids):
    n,d = X.shape
    sum = 0.
    for i in range(X.shape[0]):
        #note IOU() will return array which contains IoU for each centroid and X[i] // slightly ineffective, but I am too lazy
        sum+= max(IOU(X[i],centroids)) 
    return sum/n

def write_anchors_to_file(centroids,X,anchor_file):
    f = open(anchor_file,'w')
    
    anchors = centroids
    
    print 'Anchors = ', centroids
    
    num_anchors = anchors.shape[0]
    for i in range(num_anchors-1):
        f.write('%f,%f, '%(anchors[i][0],anchors[i][1]))

    #there should not be comma after last anchor, that's why
    f.write('%f,%f\n'%(anchors[num_anchors-1][0],anchors[num_anchors-1][1]))
    
    f.write('%f\n'%(avg_IOU(X,centroids)))

    # add by wenbo
    f.write('devide by 32\n')
    for i in range(num_anchors-1):
        f.write('%f,%f, '%(anchors[i][0]/32,anchors[i][1]/32))
    f.write('%f,%f\n'%(anchors[num_anchors-1][0]/32,anchors[num_anchors-1][1]/32))


def kmeans(X,centroids,eps,anchor_file):
    
    D=[]
    old_D = []
    iterations = 0
    diff = 1e5
    c,dim = centroids.shape

    while True:
        iterations+=1
        D = []            
        for i in range(X.shape[0]):
            d = 1 - IOU(X[i],centroids)
            D.append(d)
        D = np.array(D)
        if len(old_D)>0:
            diff = np.sum(np.abs(D-old_D))
        
        print 'diff = %f'%diff

        if diff<eps or iterations>100:
            print "Number of iterations took = %d"%(iterations)
            print "Centroids = ",centroids

            
            write_anchors_to_file(centroids,X,anchor_file)
            
            return

        #assign samples to centroids 
        belonging_centroids = np.argmin(D,axis=1)
        print belonging_centroids 

        #calculate the new centroids
        centroid_sums=np.zeros((c,dim),np.float)
        for i in range(belonging_centroids.shape[0]):
            centroid_sums[belonging_centroids[i]]+=X[i]
        
        for j in range(c):
            
            print '#annotations in centroid[%d] is %d'%(j,np.sum(belonging_centroids==j))
            centroids[j] = centroid_sums[j]/np.sum(belonging_centroids==j)
        
        print 'new centroids = ',centroids        



        old_D = D.copy()
    print D

def main(argv):
    parser = argparse.ArgumentParser()
    parser.add_argument('-filelist', default = 'all.txt',
                        help='path to filelist\n' )
    parser.add_argument('-num_clusters', default = 0, type = int,
                        help='number of clusters\n' )
    parser.add_argument('-output_dir', default = 'anchors', type = str,
                        help='Output anchor directory\n' )

   
    args = parser.parse_args()
    

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)


    f = open(args.filelist)
    

    lines = [line.rstrip('\n') for line in f.readlines()]
    
    annotation_dims = []
    for line in lines:
        w,h = line.split(' ')[3:]
        print w,h
        annotation_dims.append(map(float,(w,h)))
    annotation_dims = np.array(annotation_dims)
    
    
    eps = 0.005
    
    if args.num_clusters == 0:
        for num_clusters in range(1,11): #we make 1 through 10 clusters 
            anchor_file = join( args.output_dir,'anchors%d.txt'%(num_clusters))

            indices = [ random.randrange(annotation_dims.shape[0]) for i in range(num_clusters)]
            centroids = annotation_dims[indices]
            kmeans(annotation_dims,centroids,eps,anchor_file)
            print 'centroids.shape', centroids.shape
        print 'Filelist = %s'%(args.filelist)
    else:
        anchor_file = join( args.output_dir,'anchors%d.txt'%(args.num_clusters))
        indices = [ random.randrange(annotation_dims.shape[0]) for i in range(args.num_clusters)]
        centroids = annotation_dims[indices]
        kmeans(annotation_dims,centroids,eps,anchor_file)


        print 'centroids.shape', centroids.shape
        print 'Filelist = %s'%(args.filelist)

if __name__=="__main__":
    main(sys.argv)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值