🐕请你判断一个 9x9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。
数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 ‘.’ 表示。
🐱注意:
一个有效的数独(部分已被填充)不一定是可解的。
只需要根据以上规则,验证已经填入的数字是否有效即可。
输入:board =
[[“5”,“3”,".",".",“7”,".",".",".","."]
,[“6”,".",".",“1”,“9”,“5”,".",".","."]
,[".",“9”,“8”,".",".",".",".",“6”,"."]
,[“8”,".",".",".",“6”,".",".",".",“3”]
,[“4”,".",".",“8”,".",“3”,".",".",“1”]
,[“7”,".",".",".",“2”,".",".",".",“6”]
,[".",“6”,".",".",".",".",“2”,“8”,"."]
,[".",".",".",“4”,“1”,“9”,".",".",“5”]
,[".",".",".",".",“8”,".",".",“7”,“9”]]
输出:true
示例 2:
输入:board =
[[“8”,“3”,".",".",“7”,".",".",".","."]
,[“6”,".",".",“1”,“9”,“5”,".",".","."]
,[".",“9”,“8”,".",".",".",".",“6”,"."]
,[“8”,".",".",".",“6”,".",".",".",“3”]
,[“4”,".",".",“8”,".",“3”,".",".",“1”]
,[“7”,".",".",".",“2”,".",".",".",“6”]
,[".",“6”,".",".",".",".",“2”,“8”,"."]
,[".",".",".",“4”,“1”,“9”,".",".",“5”]
,[".",".",".",".",“8”,".",".",“7”,“9”]]
输出:false
解释:除了第一行的第一个数字从 5 改为 8 以外,空格内其他数字均与 示例1 相同。 但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。
🐖提示:
- board.length == 9
- board[i].length == 9
- board[i][j] 是一位数字或者 ‘.’
🐒思路:
1、暴力破解
遍历每一行 存入set 判断最后的结果和存入set的数量是否一直 如果不一致证明有重复
遍历每一列 存入set 判断最后的结果和存入set的数量是否一直 如果不一致证明有重复
遍历每个 9*9的格子 存入set 判断最后的结果和存入set的数量是否一直 如果不一致证明有重复
上代码
//每行是否违规
for(int row = 0; row < 9 ; row++) {
Set<Character> set = new HashSet<>();
int count = 0;
for(int col = 0; col < 9 ; col++) {
if(board[row][col] == '.') {
continue;
}else {
count++;
set.add(board[row][col]);
}
}
if(count != set.size()) {
return false;
}
}
//每列是否违规
for(int col = 0; col < 9 ; col++) {
Set<Character> set = new HashSet<>();
int count = 0;
for(int row = 0; row < 9 ; row++) {
if(board[row][col] == '.') {
continue;
}else {
count ++;
set.add(board[row][col]);
}
}
if(count != set.size()) {
return false;
}
}
// 3 * 3 是否违规
// cur 当前二维数组的行
for(int cur = 0; cur < 9 ; cur+=3) {
for(int i = 0; i < 9; i+=3) {
Set<Character> set = new HashSet<>();
int count = 0;
for(int index = cur; index < cur+3; index ++) {
for(int col = i; col < i + 3; col ++) {
if(board[index][col] == '.') {
continue;
}else {
count++;
set.add(board[index][col]);
}
}
}
if(count != set.size()) {
return false;
}
}
}
return true;
}
2、暴力破解 优化一定空间版本
🦆存入set之前 判断是否存在即可 无需再多一个变量记住数量
上代码
public static boolean isValidSudoku_V2(char[][] board) {
//每行是否违规
for(int row = 0; row < 9 ; row++) {
Set<Character> set = new HashSet<>();
for(int col = 0; col < 9 ; col++) {
if(board[row][col] == '.') {
continue;
}else {
if(!set.contains(board[row][col])) {
set.add(board[row][col]);
}else {
return false;
}
}
}
}
//每列是否违规
for(int col = 0; col < 9 ; col++) {
Set<Character> set = new HashSet<>();
for(int row = 0; row < 9 ; row++) {
if(board[row][col] == '.') {
continue;
}else {
if(!set.contains(board[row][col])) {
set.add(board[row][col]);
}else {
return false;
}
}
}
}
// 3 * 3 是否违规
// cur 当前二维数组的行
for(int cur = 0; cur < 9 ; cur+=3) {
for(int i = 0; i < 9; i+=3) {
Set<Character> set = new HashSet<>();
for(int index = cur; index < cur+3; index ++) {
for(int col = i; col < i + 3; col ++) {
if(board[index][col] == '.') {
continue;
}else {
if(!set.contains(board[index][col])) {
set.add(board[index][col]);
}else {
return false;
}
}
}
}
}
}
return true;
}