1、randomSplit:def randomSplit(weights: Array[Double], seed: Long = Utils.random.nextLong): Array[RDD[T]]
该函数根据权重数组weights将一个RDD切分为多个RDD,seed是random种子(可忽略)。
scala> var rdd = sc.makeRDD(1 to 10,10)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[16] at makeRDD at :21
scala> rdd.collect
res6: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
scala> var splitRDD = rdd.randomSplit(Array(1.0,2.0,3.0,4.0))
splitRDD: Array[org.apache.spark.rdd.RDD[Int]] = Array(MapPartitionsRDD[17] at randomSplit at :23,
MapPartitionsRDD[18] at randomSplit at :23,
MapPartitionsRDD[19] at randomSplit at :23,
MapPartitionsRDD[20] at randomSplit at :23)
//这里注意:randomSplit的结果是一个RDD数组
scala> splitRDD.size
res8: Int = 4
//由于randomSplit的第一个参数weights中传入的值有4个,因此,就会切分成4个RDD,
//把原来的rdd按照权重1.0,2.0,3.0,4.0,随机划分到这4个RDD中,权重高的RDD,划分到//的几率就大一些。
//注意,权重的总和加起来为1,否则会不正常
scala> splitRDD(0).collect
res10: Array[Int] = Array(1, 4)
scala> splitRDD(1).collect
res11: Array[Int] = Array(3)
scala> splitRDD(2).collect
res12: Array[Int] = Array(5, 9)
scala> splitRDD(3).collect
res13: Array[Int] = Array(2, 6, 7, 8, 10)
2、glom:def glom(): RDD[Array[T]]
该函数将RDD中每一个分区中类型为T的元素转换成Array[T],这样RDD的每个分区就分别只有一个数组元素。
scala> var rdd = sc.makeRDD(1 to 10,3)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[38] at makeRDD at :21
scala> rdd.partitions.size
res33: Int = 3 //该RDD有3个分区
scala> rdd.glom().collect
res35: Array[Array[Int]] = Array(Array(1, 2, 3), Array(4, 5, 6), Array(7, 8, 9, 10))
//glom将每个分区中的元素放到一个数组中,这样,结果就变成了3个数组