搜索算法
文章平均质量分 95
cshilin
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
k-d tree
k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构。主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索)。应用背景 SIFT算法中做特征点匹配的时候就会利用到k-d树。而特征点匹配实际上就是一个通过距离函数在高维矢量之间进行相似性检索的问题。针对如何快速而准确地找到查询点的近邻,现在提出了很多高维空间索引结构和近似查询的算法,k-d树就是其中转载 2016-08-04 15:55:47 · 1711 阅读 · 0 评论 -
R tree
R树在数据库等领域做出的功绩是非常显著的。它很好的解决了在高维空间搜索等问题。举个R树在现实领域中能够解决的例子吧:查找20英里以内所有的餐厅。如果没有R树你会怎么解决?一般情况下我们会把餐厅的坐标(x,y)分为两个字段存放在数据库中,一个字段记录经度,另一个字段记录纬度。这样的话我们就需要遍历所有的餐厅获取其位置信息,然后计算是否满足要求。如果一个地区有100家餐厅的话,我们就要进行100次位置转载 2016-08-04 15:58:47 · 4170 阅读 · 0 评论 -
四叉树
四叉树索引的基本思想是将地理空间递归划分为不同层次的树结构。它将已知范围的空间等分成四个相等的子空间,如此递归下去,直至树的层次达到一定深度或者满足某种要求后停止分割。四叉树的结构比较简单,并且当空间数据对象分布比较均匀时,具有比较高的空间数据插入和查询效率,因此四叉树是GIS中常用的空间索引之一。常规四叉树的结构如图所示,地理空间对象都存储在叶子节点上,中间节点以及根节点不存储地理空间对象。转载 2016-08-04 16:00:24 · 4321 阅读 · 0 评论 -
LSH搜索算法
LSH(Location Sensitive Hash),即位置敏感哈希函数。与一般哈希函数不同的是位置敏感性,也就是散列前的相似点经过哈希之后,也能够在一定程度上相似,并且具有一定的概率保证。形式化定义:对于任意q,p属于S,若从集合S到U的函数族H={h1,h2...hn}对距离函数D(,),如欧式距离、曼哈顿距离等等,满足条件: 则称D(,)是位置敏感的。原创 2016-08-04 15:33:35 · 10635 阅读 · 0 评论
分享