Sqoop简介
Apache Sqoop™是一种旨在有效地在Apache Hadoop和诸如关系数据库等结构化数据存储之间传输大量数据的工具。
Sqoop于2012年3月孵化出来,现在是一个顶级的Apache项目。
请注意,1.99.7与1.4.6不兼容,且没有特征不完整,它并不打算用于生产部署。
Sqoop原理
将导入或导出命令翻译成mapreduce程序来实现。
在翻译出的mapreduce中主要是对inputformat和outputformat进行定制。
Sqoop安装
安装Sqoop的前提是已经具备Java和Hadoop的环境。
下载并解压
最新版下载地址:http://www.apache.org/dyn/closer.lua/sqoop/1.4.7
上传安装包sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz到虚拟机中,如我的上传目录是:/opt/soft/
解压sqoop安装包到指定目录,如:
tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C /opt/module/
修改配置文件
Sqoop的配置文件与大多数大数据框架类似,在sqoop根目录下的conf目录中。
重命名配置文件
mv sqoop-env-template.sh sqoop-env.sh
mv sqoop-site-template.xml sqoop-site.xml (此命令不用做)
修改配置文件
sqoop-env.sh
export HADOOP_COMMON_HOME=/opt/module/hadoop-2.8.4
export HADOOP_MAPRED_HOME=/opt/module/hadoop-2.8.4
export HIVE_HOME=/opt/module/hive
export ZOOKEEPER_HOME=/opt/module/zookeeper-3.4.10
export ZOOCFGDIR=/opt/module/zookeeper-3.4.10/conf
拷贝JDBC驱动
提取码:wnvy
拷贝jdbc驱动到sqoop的lib目录下,如:
cp -a mysql-connector-java-5.1.27-bin.jar /opt/module/sqoop-1.4.6.bin__hadoop-2.0.4-alpha/lib
验证Sqoop
我们可以通过某一个command来验证sqoop配置是否正确:
$ bin/sqoop help
出现一些Warning警告(警告信息已省略),并伴随着帮助命令的输出:
Available commands:
codegen Generate code to interact with database records
create-hive-table Import a table definition into Hive
eval Evaluate a SQL statement and display the results
export Export an HDFS directory to a database table
help List available commands
import Import a table from a database to HDFS
import-all-tables Import tables from a database to HDFS
version Display version information
·····
注:注释掉configure-sqoop 134行到143行的内容,内容如下
134 ## Moved to be a runtime check in sqoop.
135 #if [ ! -d "${HCAT_HOME}" ]; then
136 # echo "Warning: $HCAT_HOME does not exist! HCatalog jobs will fail."
137 # echo 'Please set $HCAT_HOME to the root of your HCatalog installation.'
138 #fi
139 #
140 #if [ ! -d "${ACCUMULO_HOME}" ]; then
141 # echo "Warning: $ACCUMULO_HOME does not exist! Accumulo imports will fail."
142 # echo 'Please set $ACCUMULO_HOME to the root of your Accumulo installation.'
143 #fi
测试Sqoop是否能够成功连接数据库
$ bin/sqoop list-databases --connect jdbc:mysql://bigdata113:3306/ --username root --password 000000
出现如下输出:
information_schema
metastore
mysql
performance_schema
Sqoop的简单使用案例
导入数据
在Sqoop中,“导入”概念指:从非大数据集群(RDBMS)向大数据集群(HDFS,HIVE,HBASE)中传输数据,叫做:导入,即使用import关键字。
RDBMS到HDFS
确定Mysql服务开启正常
在Mysql中新建一张表并插入一些数据
mysql -uroot -p000000
mysql> create database company;
mysql> create table company.staff(id int(4) primary key not null auto_increment, name varchar(255), sex varchar(255));
mysql> insert into company.staff(name, sex) values('Thomas', 'Male');
mysql> insert into company.staff(name, sex) values('Catalina', 'FeMale');
导入数据
全部导入
bin/sqoop import \
--connect jdbc:mysql://bigdata112:3306/test \
--username root \
--password 000000 \
--table student \
--target-dir /user/test/student1 \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t"
查询导入
bin/sqoop import \
--connect jdbc:mysql://bigdata112:3306/test \
--username root \
--password 000000 \
--target-dir /user/test/student \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--query 'select name,sex from student where id <=6 and $CONDITIONS;'
尖叫提示:must contain '$CONDITIONS' in WHERE clause.
注:CONDITIONS 翻译‘条件’
尖叫提示:如果query后使用的是双引号,则$CONDITIONS前必须加转移符,防止shell识别为自己的变量。
导入指定列
bin/sqoop import \
--connect jdbc:mysql://bigdata112:3306/test \
--username root \
--password 000000 \
--target-dir /user/test/student \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--columns id,name \
--table student
尖叫提示:columns中如果涉及到多列,用逗号分隔,分隔时不要添加空格
使用sqoop关键字筛选查询导入数据
bin/sqoop import \
--connect jdbc:mysql://bigdata112:3306/test \
--username root \
--password 000000 \
--target-dir /user/test/student \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--table student \
--where "id=2"
尖叫提示:在Sqoop中可以使用sqoop import -D property.name=property.value这样的方式加入执行任务的参数,多个参数用空格隔开。
RDBMS到Hive
bin/sqoop import \
--connect jdbc:mysql://bigdata112:3306/test \
--username root \
--password 000000 \
--table student \
--delete-target-dir \
--num-mappers 1 \
--hive-import \
--fields-terminated-by "\t" \
--hive-overwrite \
--hive-table student_hive
尖叫提示:该过程分为两步,第一步将数据导入到HDFS,第二步将导入到HDFS的数据迁移到Hive仓库
尖叫提示:从MYSQL到Hive,本质时从MYSQL => HDFS => load To Hive
导出数据
在Sqoop中,“导出”概念指:从大数据集群(HDFS,HIVE,HBASE)向非大数据集群(RDBMS)中传输数据,叫做:导出,即使用export关键字。
HIVE/HDFS到RDBMS
创建aca表
create table abc(id int,name VARCHAR(5));
bin/sqoop export \
--connect jdbc:mysql://bigdata111:3306/test characterEncoding=utf-8\
--username root \
--password 000000 \
--export-dir /user/hive/warehouse/student_hive \
--table student1 \
--num-mappers 1 \
--input-fields-terminated-by "\t"
尖叫提示:Mysql中如果表不存在,不会自动创建,自行根据表结构创建
尖叫提示:重复往mysql的统一个表中导出数据,mysql的表不能设置主键和自增。
尖叫提示:如果数据导出mysql中是“??”那么添加characterEncoding=utf-8
思考:数据是覆盖还是追加 答案:追加
脚本打包
使用opt格式的文件打包sqoop命令,然后执行
创建一个.opt文件
touch job_HDFS2RDBMS.opt
编写sqoop脚本
$ vi ./job_HDFS2RDBMS.opt
#以下命令是从staff_hive中追加导入到mysql的aca表中
export
--connect
jdbc:mysql://bigdata111:3306/MYSQLTOHDFS
--username
root
--password
000000
--table
student2
--num-mappers
1
--export-dir
/user/hive/warehouse111/student_hive
--input-fields-terminated-by
"\t"
执行该脚本
bin/sqoop --options-file job_HDFS2RDBMS.opt