大数据之Sqoop 安装

本文详细介绍了Apache Sqoop的安装步骤,包括下载、解压、配置、拷贝JDBC驱动以及验证安装。此外,还讲解了Sqoop的简单使用案例,包括从RDBMS导入数据到HDFS和Hive,以及从HDFS和Hive导出数据到RDBMS的操作。文章提供了解决Sqoop操作中常见问题的提示和注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sqoop简介

Apache Sqoop™是一种旨在有效地在Apache Hadoop和诸如关系数据库等结构化数据存储之间传输大量数据的工具。
Sqoop于2012年3月孵化出来,现在是一个顶级的Apache项目。
请注意,1.99.7与1.4.6不兼容,且没有特征不完整,它并不打算用于生产部署。


Sqoop原理

将导入或导出命令翻译成mapreduce程序来实现。
在翻译出的mapreduce中主要是对inputformat和outputformat进行定制。


Sqoop安装

安装Sqoop的前提是已经具备Java和Hadoop的环境。


下载并解压

最新版下载地址:http://www.apache.org/dyn/closer.lua/sqoop/1.4.7

提取码: h013

上传安装包sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz到虚拟机中,如我的上传目录是:/opt/soft/

解压sqoop安装包到指定目录,如:
tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C /opt/module/

修改配置文件

Sqoop的配置文件与大多数大数据框架类似,在sqoop根目录下的conf目录中。

重命名配置文件

mv sqoop-env-template.sh sqoop-env.sh
mv sqoop-site-template.xml sqoop-site.xml
(此命令不用做)

修改配置文件
sqoop-env.sh

export HADOOP_COMMON_HOME=/opt/module/hadoop-2.8.4
export HADOOP_MAPRED_HOME=/opt/module/hadoop-2.8.4
export HIVE_HOME=/opt/module/hive
export ZOOKEEPER_HOME=/opt/module/zookeeper-3.4.10
export ZOOCFGDIR=/opt/module/zookeeper-3.4.10/conf

拷贝JDBC驱动

提取码:wnvy
拷贝jdbc驱动到sqoop的lib目录下,如:
cp -a mysql-connector-java-5.1.27-bin.jar /opt/module/sqoop-1.4.6.bin__hadoop-2.0.4-alpha/lib

验证Sqoop

我们可以通过某一个command来验证sqoop配置是否正确:

$ bin/sqoop help
出现一些Warning警告(警告信息已省略),并伴随着帮助命令的输出:
Available commands:
  codegen            Generate code to interact with database records
  create-hive-table     Import a table definition into Hive
  eval               Evaluate a SQL statement and display the results
  export             Export an HDFS directory to a database table
  help               List available commands
  import             Import a table from a database to HDFS
  import-all-tables     Import tables from a database to HDFS
  version            Display version information
·····

注:注释掉configure-sqoop 134行到143行的内容,内容如下


    134 ## Moved to be a runtime check in sqoop.
     135 #if [ ! -d "${HCAT_HOME}" ]; then
    136 #  echo "Warning: $HCAT_HOME does not exist! HCatalog jobs will fail."
    137 #  echo 'Please set $HCAT_HOME to the root of your HCatalog installation.'
    138 #fi
    139 #
    140 #if [ ! -d "${ACCUMULO_HOME}" ]; then
    141 #  echo "Warning: $ACCUMULO_HOME does not exist! Accumulo imports will fail."
    142 #  echo 'Please set $ACCUMULO_HOME to the root of your Accumulo installation.'
    143 #fi

测试Sqoop是否能够成功连接数据库

$ bin/sqoop list-databases --connect jdbc:mysql://bigdata113:3306/ --username root --password 000000
出现如下输出:
information_schema
metastore
mysql
performance_schema

Sqoop的简单使用案例

导入数据

在Sqoop中,“导入”概念指:从非大数据集群(RDBMS)向大数据集群(HDFS,HIVE,HBASE)中传输数据,叫做:导入,即使用import关键字。

RDBMS到HDFS

确定Mysql服务开启正常

在Mysql中新建一张表并插入一些数据

 mysql -uroot -p000000
mysql> create database company;
mysql> create table company.staff(id int(4) primary key not null auto_increment, name varchar(255), sex varchar(255));
mysql> insert into company.staff(name, sex) values('Thomas', 'Male');
mysql> insert into company.staff(name, sex) values('Catalina', 'FeMale');

导入数据

全部导入

bin/sqoop import \
--connect jdbc:mysql://bigdata112:3306/test \
--username root \
--password 000000 \
--table student \
--target-dir /user/test/student1 \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t"

查询导入

bin/sqoop import \
--connect jdbc:mysql://bigdata112:3306/test \
--username root \
--password 000000 \
--target-dir /user/test/student \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--query 'select name,sex from student where id <=6 and $CONDITIONS;'

尖叫提示must contain '$CONDITIONS' in WHERE clause. 注:CONDITIONS 翻译‘条件’
尖叫提示:如果query后使用的是双引号,则$CONDITIONS前必须加转移符,防止shell识别为自己的变量。

导入指定列

bin/sqoop import \
--connect jdbc:mysql://bigdata112:3306/test \
--username root \
--password 000000 \
--target-dir /user/test/student \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--columns id,name \
--table student

尖叫提示:columns中如果涉及到多列,用逗号分隔,分隔时不要添加空格

使用sqoop关键字筛选查询导入数据

bin/sqoop import \
--connect jdbc:mysql://bigdata112:3306/test \
--username root \
--password 000000 \
--target-dir /user/test/student \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--table student \
--where "id=2"

尖叫提示:在Sqoop中可以使用sqoop import -D property.name=property.value这样的方式加入执行任务的参数,多个参数用空格隔开。

RDBMS到Hive

 bin/sqoop import \
--connect jdbc:mysql://bigdata112:3306/test \
--username root \
--password 000000 \
--table student \
--delete-target-dir \
--num-mappers 1 \
--hive-import \
--fields-terminated-by "\t" \
--hive-overwrite \
--hive-table student_hive

尖叫提示:该过程分为两步,第一步将数据导入到HDFS,第二步将导入到HDFS的数据迁移到Hive仓库
尖叫提示:从MYSQL到Hive,本质时从MYSQL => HDFS => load To Hive

导出数据

在Sqoop中,“导出”概念指:从大数据集群(HDFS,HIVE,HBASE)向非大数据集群(RDBMS)中传输数据,叫做:导出,即使用export关键字。

HIVE/HDFS到RDBMS

创建aca表
create table abc(id int,name VARCHAR(5));

bin/sqoop export \
--connect jdbc:mysql://bigdata111:3306/test characterEncoding=utf-8\
--username root \
--password 000000 \
--export-dir /user/hive/warehouse/student_hive \
--table student1 \
--num-mappers 1 \
--input-fields-terminated-by "\t"

尖叫提示:Mysql中如果表不存在,不会自动创建,自行根据表结构创建
尖叫提示:重复往mysql的统一个表中导出数据,mysql的表不能设置主键和自增。
尖叫提示:如果数据导出mysql中是“??”那么添加characterEncoding=utf-8
思考:数据是覆盖还是追加 答案:追加

脚本打包

使用opt格式的文件打包sqoop命令,然后执行

创建一个.opt文件

touch job_HDFS2RDBMS.opt

编写sqoop脚本

$ vi ./job_HDFS2RDBMS.opt
#以下命令是从staff_hive中追加导入到mysql的aca表中

export
--connect
jdbc:mysql://bigdata111:3306/MYSQLTOHDFS
--username
root
--password
000000
--table
student2
--num-mappers
1
--export-dir
/user/hive/warehouse111/student_hive
--input-fields-terminated-by
"\t"

执行该脚本
bin/sqoop --options-file job_HDFS2RDBMS.opt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值