(yolov8) (.venv) D:\ultralytics-main>yolo task=detect mode=train model=yolov8n.pt data=data/blueberry.yaml batch=16 epochs=100 imgsz=640 workers=16 device=cpu
Ultralytics 8.3.202 Python-3.10.18 torch-2.8.0+cpu CPU (13th Gen Intel Core(TM) i5-13500HX)
engine\trainer: agnostic_nms=False, amp=True, augment=False, auto_augment=randaugment, batch=16, bgr=0.0, box=7.5, cache=False, cfg=None, classes=None, close_mosaic=10, cls=0.5, compile=False, conf=None, copy_paste=0.0, copy_paste_mode=flip, cos_lr=False, cutmix=0.0, data=data/blueberry.yaml, degrees=0.0, deterministic=True, device=cpu, dfl=1.5, dnn=False, dropout=0.0, dynamic=False, embed=None, epochs=100, erasing=0.4, exist_ok=False, fliplr=0.5, flipud=0.0, format=torchscript, fraction=1.0, freeze=None, half=False, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, imgsz=640, int8=False, iou=0.7, keras=False, kobj=1.0, line_width=None, lr0=0.01, lrf=0.01, mask_ratio=4, max_det=300, mixup=0.0, mode=train, model=yolov8n.pt, momentum=0.937, mosaic=1.0, multi_scale=False, name=train5, nbs=64, nms=False, opset=None, optimize=False, optimizer=auto, overlap_mask=True, patience=100, perspective=0.0, plots=True, pose=12.0, pretrained=True, profile=False, project=None, rect=False, resume=False, retina_masks=False, save=True, save_conf=False, save_crop=False, save_dir=D:\ultralytics-main\runs\detect\train5, save_frames=False, save_json=False, save_period=-1, save_txt=False, scale=0.5, seed=0, shear=0.0, show=False, show_boxes=True, show_conf=True, show_labels=True, simplify=True, single_cls=False, source=None, split=val, stream_buffer=False, task=detect, time=None, tracker=botsort.yaml, translate=0.1, val=True, verbose=True, vid_stride=1, visualize=False, warmup_bias_lr=0.1, warmup_epochs=3.0, warmup_momentum=0.8, weight_decay=0.0005, workers=16, workspace=None
Overriding model.yaml nc=80 with nc=2
from n params module arguments
0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2]
4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2]
6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1]
12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1]
15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1]
16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1]
19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1]
22 [15, 18, 21] 1 751702 ultralytics.nn.modules.head.Detect [2, [64, 128, 256]]
Model summary: 129 layers, 3,011,238 parameters, 3,011,222 gradients, 8.2 GFLOPs
Transferred 319/355 items from pretrained weights
Freezing layer 'model.22.dfl.conv.weight'
train: Fast image access (ping: 0.30.1 ms, read: 1095.084.9 MB/s, size: 5704.1 KB)
train: Scanning data\labels... 42 images, 0 backgrounds, 0 corrupt: 100% ━━━━━━━━━━━━ 42/42 231.9it/s 0.2s
train: New cache created: data\labels.cache
val: Fast image access (ping: 0.10.0 ms, read: 1136.6122.4 MB/s, size: 5159.8 KB)
val: Scanning data\labels... 5 images, 0 backgrounds, 0 corrupt: 100% ━━━━━━━━━━━━ 5/5 832.7it/s 0.0s
val: New cache created: data\labels.cache
Plotting labels to D:\ultralytics-main\runs\detect\train5\labels.jpg...
optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically...
optimizer: AdamW(lr=0.001667, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)
Image sizes 640 train, 640 val
Using 0 dataloader workers
Logging results to D:\ultralytics-main\runs\detect\train5
Starting training for 100 epochs...
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
1/100 0G 4.55 4.535 1.72 4201 640: 100% ━━━━━━━━━━━━ 3/3 0.2it/s 19.2s
Class Images Instances Box(P R mAP50 mAP50-95): 100% ━━━━━━━━━━━━ 1/1 1.1it/s 0.9s
all 5 1375 0 0 0 0
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
2/100 0G 4.202 4.315 1.584 4407 640: 100% ━━━━━━━━━━━━ 3/3 0.2it/s 14.1s
Class Images Instances Box(P R mAP50 mAP50-95): 100% ━━━━━━━━━━━━ 1/1 1.1it/s 0.9s
all 5 1375 0 0 0 0
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
3/100 0G 4.064 4.144 1.384 4490 640: 100% ━━━━━━━━━━━━ 3/3 0.3it/s 10.9s
Class Images Instances Box(P R mAP50 mAP50-95): 100% ━━━━━━━━━━━━ 1/1 1.2it/s 0.8s
all 5 1375 0.000654 0.00204 0.000329 3.29e-05
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
4/100 0G 3.692 3.821 1.25 3762 640: 100% ━━━━━━━━━━━━ 3/3 0.2it/s 13.4s
Class Images Instances Box(P R mAP50 mAP50-95): 100% ━━━━━━━━━━━━ 1/1 1.2it/s 0.9s
all 5 1375 0 0 0 0
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
5/100 0G 3.748 3.537 1.194 4132 640: 100% ━━━━━━━━━━━━ 3/3 0.2it/s 13.3s
Class Images Instances Box(P R mAP50 mAP50-95): 100% ━━━━━━━━━━━━ 1/1 1.2it/s 0.8s
all 5 1375 0 0 0 0
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
6/100 0G 3.638 3.193 1.139 3905 640: 100% ━━━━━━━━━━━━ 3/3 0.2it/s 17.4s
Class Images Instances Box(P R mAP50 mAP50-95): 100% ━━━━━━━━━━━━ 1/1 1.1it/s 0.9s
all 5 1375 0 0 0 0
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
7/100 0G 3.872 3.076 1.119 4161 640: 100% ━━━━━━━━━━━━ 3/3 0.2it/s 13.1s
Class Images Instances Box(P R mAP50 mAP50-95): 100% ━━━━━━━━━━━━ 1/1 1.0it/s 1.0s
all 5 1375 0.004 0.00133 0.00205 0.000405
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
8/100 0G 3.584 2.822 1.087 3236 640: 100% ━━━━━━━━━━━━ 3/3 0.3it/s 11.5s
Class Images Instances Box(P R mAP50 mAP50-95): 100% ━━━━━━━━━━━━ 1/1 1.0it/s 1.0s
all 5 1375 0.0362 0.0416 0.0223 0.00492
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
9/100 0G 3.666 2.733 1.076 5438 640: 100% ━━━━━━━━━━━━ 3/3 0.2it/s 12.6s
Class Images Instances Box(P R mAP50 mAP50-95): 100% ━━━━━━━━━━━━ 1/1 0.9it/s 1.1s
all 5 1375 0.0582 0.0696 0.0406 0.0141
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
10/100 0G 3.707 2.695 1.081 4609 640: 100% ━━━━━━━━━━━━ 3/3 0.2it/s 14.0s
Class Images Instances Box(P R mAP50 mAP50-95): 100% ━━━━━━━━━━━━ 1/1 0.9it/s 1.1s
all 5 1375 0.0643 0.07 0.0487 0.0153
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
11/100 0G 3.582 2.541 1.072 3801 640: 100% ━━━━━━━━━━━━ 3/3 0.2it/s 13.9s
Class Images Instances Box(P R mAP50 mAP50-95): 100% ━━━━━━━━━━━━ 1/1 0.9it/s 1.1s
all 5 1375 0.126 0.081 0.0861 0.0284
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
12/100 0G 3.534 2.473 1.05 3943 640: 100% ━━━━━━━━━━━━ 3/3 0.1it/s 25.3s
Class Images Instances Box(P R mAP50 mAP50-95): 100% ━━━━━━━━━━━━ 1/1 0.9it/s 1.1s
all 5 1375 0.182 0.0932 0.118 0.0465
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
13/100 0G 3.568 2.463 1.059 2693 640: 100% ━━━━━━━━━━━━ 3/3 0.2it/s 17.9s
Class Images Instances Box(P R mAP50 mAP50-95): 100% ━━━━━━━━━━━━ 1/1 0.4it/s 2.4s
all 5 1375 0.262 0.124 0.17 0.0598
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
14/100 0G 3.579 2.402 1.043 4156 640: 100% ━━━━━━━━━━━━ 3/3 0.1it/s 20.5s
Class Images Instances Box(P R mAP50 mAP50-95): 100% ━━━━━━━━━━━━ 1/1 0.4it/s 2.4s
all 5 1375 0.201 0.129 0.146 0.0537
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
15/100 0G 3.553 2.381 1.015 3515 640: 100% ━━━━━━━━━━━━ 3/3 0.1it/s 33.1s
Class Images Instances Box(P R mAP50 mAP50-95): 100% ━━━━━━━━━━━━ 1/1 0.4it/s 2.4s
all 5 1375 0.212 0.182 0.167 0.0567
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
为什么自动停止