从鲁班造木鸢到智能控制,图解世界无人机发展简史

优快云与巨杉大学联合推出免费分布式数据库集训营,适合零基础学习者,涵盖分布式数据库与架构知识,完成课程更有专属礼品相送。

来源 | ABINGE

责编 | 夕颜

【End】

优快云x巨杉大学联合认证学习,免费开放!“分布式数据库集训营”帮助您从零开始学习分布式数据库、分布式架构知识,现在加入活动,完成课程还将专属礼品。快来参加吧~

推荐阅读 

从知青、终身教授到芯原创始人,戴伟民的中国“芯”之路

啥?不让一块芯片流向华为?

2020年涨薪26-30%,能实现吗?18%数据科学家是这么期待的

隐身术?登顶 GitHub Top1:200 行 JS 代码让画面人物瞬间消失!

RabbitMQ VS Kafka:消息队列与流处理平台之争

被盗巨鲸用户可能遭到了持续性攻击

你点的每一个在看,我认真当成了喜欢

猛戳“阅读原文”,了解详情

无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值