tf.Assert/tf.control_deopendencies

博客主要列举了三个案例,分别为案例一、案例二和案例三,但未给出具体案例内容。

在这里插入图片描述
case one:
在这里插入图片描述
case two
在这里插入图片描述
case three
在这里插入图片描述

潮汐研究作为海洋科学的关键分支,融合了物理海洋学、地理信息系统及水利工程等多领域知识。TMD2.05.zip是一套基于MATLAB环境开发的潮汐专用分析工具集,为科研人员与工程实践者提供系统化的潮汐建模与计算支持。该工具箱通过模块化设计实现了两大核心功能: 在交互界面设计方面,工具箱构建了图形化操作环境,有效降低了非专业用户的操作门槛。通过预设参数输入模块(涵盖地理坐标、时间序列、测站数据等),用户可自主配置模型运行条件。界面集成数据加载、参数调整、可视化呈现及流程控制等标准化组件,将复杂的数值运算过程转化为可交互的操作流程。 在潮汐预测模块中,工具箱整合了谐波分解法与潮流要素解析法等数学模型。这些算法能够解构潮汐观测数据,识别关键影响要素(包括K1、O1、M2等核心分潮),并生成不同时间尺度的潮汐预报。基于这些模型,研究者可精准推算特定海域的潮位变化周期与振幅特征,为海洋工程建设、港湾规划设计及海洋生态研究提供定量依据。 该工具集在实践中的应用方向包括: - **潮汐动力解析**:通过多站点观测数据比对,揭示区域主导潮汐成分的时空分布规律 - **数值模型构建**:基于历史观测序列建立潮汐动力学模型,实现潮汐现象的数字化重构与预测 - **工程影响量化**:在海岸开发项目中评估人工构筑物对自然潮汐节律的扰动效应 - **极端事件模拟**:建立风暴潮与天文潮耦合模型,提升海洋灾害预警的时空精度 工具箱以"TMD"为主程序包,内含完整的函数库与示例脚本。用户部署后可通过MATLAB平台调用相关模块,参照技术文档完成全流程操作。这套工具集将专业计算能力与人性化操作界面有机结合,形成了从数据输入到成果输出的完整研究链条,显著提升了潮汐研究的工程适用性与科研效率。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
/home/lixing/AirVLN_ws/AirVLN Not using distributed mode 2025-09-25 14:55:48,250 - INFO - train_vlnce:856 - Namespace(DDP_MASTER_PORT=20000, DistributedDataParallel=False, EVAL_CKPT_PATH_DIR=None, EVAL_DATASET='val_unseen', EVAL_GENERATE_VIDEO=False, EVAL_NUM=-1, Image_Height_DEPTH=256, Image_Height_RGB=224, Image_Width_DEPTH=256, Image_Width_RGB=224, PROGRESS_MONITOR_alpha=1.0, PROGRESS_MONITOR_use=False, SEQ2SEQ_use_prev_action=False, TF_mode_load_scene=[], TRAINVAL_VOCAB=PosixPath('/home/lixing/AirVLN_ws/DATA/data/aerialvln/train_vocab.txt'), TRAIN_VOCAB=PosixPath('/home/lixing/AirVLN_ws/DATA/data/aerialvln/train_vocab.txt'), ablate_depth=False, ablate_instruction=False, ablate_rgb=False, action_feature=32, batchSize=8, collect_type='TF', continue_start_from_checkpoint_path=None, continue_start_from_dagger_it=None, dagger_it=1, dagger_mode='end', dagger_mode_load_scene=[], dagger_p=1.0, dagger_update_size=8000, epochs=500, featdropout=0.4, inflection_weight_coef=1.9, logger_file_name='/home/lixing/AirVLN_ws/DATA/output/AirVLN-seq2seq/train/logs/AirVLN-seq2seq_20250925-145547-042170.log', lr=0.00025, machines_info=[{'MACHINE_IP': '127.0.0.1', 'SOCKET_PORT': 30000, 'MAX_SCENE_NUM': 16, 'open_scenes': []}], make_dir_time='20250925-145547-042170', maxAction=500, maxInput=300, name='AirVLN-seq2seq', nav_graph_path='/home/lixing/AirVLN_ws/DATA/data/disceret/processed/nav_graph_10', policy_type='seq2seq', project_prefix='/home/lixing/AirVLN_ws', rgb_encoder_use_place365=False, run_type='train', simulator_tool_port=30000, token_dict_path='/home/lixing/AirVLN_ws/DATA/data/disceret/processed/token_dict_10', tokenizer_use_bert=False, trainer_gpu_device=0, vertices_path='/home/lixing/AirVLN_ws/DATA/data/disceret/scene_meshes', vlnbert='prevalent', vocab_size=10038) /home/lixing/AirVLN_ws/AirVLN/Model/encoders/resnet_encoders.py:228: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. ddppo_weights = torch.load(checkpoint, map_location=torch.device('cpu')) /home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. warnings.warn( /home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet50_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet50_Weights.DEFAULT` to get the most up-to-date weights. warnings.warn(msg) 2025-09-25 14:55:48,889 - INFO - __init__:105 - Agent parameters: 35587869. Trainable: 2961429 2025-09-25 14:55:48,889 - INFO - __init__:106 - Finished setting up policy. 2025-09-25 14:55:48,889 - INFO - initialize_trainer:471 - initialize_trainer over Traceback (most recent call last): File "./src/vlnce_src/train.py", line 1349, in <module> train_vlnce() File "./src/vlnce_src/train.py", line 876, in train_vlnce assert os.path.exists(str(lmdb_features_dir)) AssertionError nohup: appending output to 'nohup.out' Not using distributed mode 2025-09-25 14:55:50,903 - INFO - <module>:1424 - Namespace(DDP_MASTER_PORT=20000, DistributedDataParallel=False, EVAL_CKPT_PATH_DIR=None, EVAL_DATASET='val_unseen', EVAL_GENERATE_VIDEO=False, EVAL_NUM=-1, Image_Height_DEPTH=256, Image_Height_RGB=224, Image_Width_DEPTH=256, Image_Width_RGB=224, PROGRESS_MONITOR_alpha=1.0, PROGRESS_MONITOR_use=False, SEQ2SEQ_use_prev_action=False, TF_mode_load_scene=[], TRAINVAL_VOCAB=PosixPath('/home/lixing/AirVLN_ws/DATA/data/aerialvln/train_vocab.txt'), TRAIN_VOCAB=PosixPath('/home/lixing/AirVLN_ws/DATA/data/aerialvln/train_vocab.txt'), ablate_depth=False, ablate_instruction=False, ablate_rgb=False, action_feature=32, batchSize=8, collect_type='dagger', continue_start_from_checkpoint_path=None, continue_start_from_dagger_it=None, dagger_it=10, dagger_mode='end', dagger_mode_load_scene=[], dagger_p=1.0, dagger_update_size=5000, epochs=5, featdropout=0.4, inflection_weight_coef=1.9, logger_file_name='/home/lixing/AirVLN_ws/DATA/output/AirVLN-seq2seq-dagger/train/logs/AirVLN-seq2seq-dagger_20250925-145550-094505.log', lr=0.00025, machines_info=[{'MACHINE_IP': '127.0.0.1', 'SOCKET_PORT': 30000, 'MAX_SCENE_NUM': 16, 'open_scenes': []}], make_dir_time='20250925-145550-094505', maxAction=500, maxInput=300, name='AirVLN-seq2seq-dagger', nav_graph_path='/home/lixing/AirVLN_ws/DATA/data/disceret/processed/nav_graph_10', policy_type='seq2seq', project_prefix='/home/lixing/AirVLN_ws', rgb_encoder_use_place365=False, run_type='train', simulator_tool_port=30000, token_dict_path='/home/lixing/AirVLN_ws/DATA/data/disceret/processed/token_dict_10', tokenizer_use_bert=False, trainer_gpu_device=0, vertices_path='/home/lixing/AirVLN_ws/DATA/data/disceret/scene_meshes', vlnbert='prevalent', vocab_size=10038) 2025-09-25 14:55:50,906 - INFO - __init__:171 - OLD_VOCAB_SIZE: 10038 2025-09-25 14:55:50,906 - INFO - __init__:176 - VOACB: 10038 2025-09-25 14:55:55,142 - INFO - __init__:74 - Loaded with 16386 instructions, using split: train 100%|██████████████████████████████████████████████████████████████████████████| 16386/16386 [00:00<00:00, 18489.95it/s] 2025-09-25 14:55:56,047 - WARNING - __init__:136 - dataset grouped by scene 2025-09-25 14:55:56,049 - INFO - __init__:243 - init lmdb of train, features, lmdb_start_id: 0 0it [00:00, ?it/s] /home/lixing/AirVLN_ws/AirVLN/Model/encoders/resnet_encoders.py:228: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. ddppo_weights = torch.load(checkpoint, map_location=torch.device('cpu')) /home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. warnings.warn( /home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet50_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet50_Weights.DEFAULT` to get the most up-to-date weights. warnings.warn(msg) 2025-09-25 14:55:57,158 - INFO - __init__:105 - Agent parameters: 35587869. Trainable: 2961429 2025-09-25 14:55:57,158 - INFO - __init__:106 - Finished setting up policy. 2025-09-25 14:55:57,158 - INFO - initialize_trainer:512 - initialize_trainer over 2025-09-25 14:55:58 LoadNXGraphs of Scene 1 Process ForkServerProcess-3: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 206, in _construct_graph_from_pickle_file fp = open(fname, "rb") FileNotFoundError: [Errno 2] No such file or directory: '/home/lixing/AirVLN_ws/DATA/data/disceret/processed/nav_graph_10/nav_graph_dict_1.pkl' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 221, in _construct_graph_from_pickle_file result = pickle.loads(fname) TypeError: a bytes-like object is required, not 'str' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/home/lixing/AirVLN_ws/AirVLN/utils/env_vector.py", line 151, in _worker_env env = ENV( File "/home/lixing/AirVLN_ws/AirVLN/utils/env_utils.py", line 80, in __init__ self.shortest_path_sensor = ShortestPathSensor(args.nav_graph_path, args.token_dict_path, load_scenes) File "/home/lixing/AirVLN_ws/AirVLN/utils/shorest_path_sensor.py", line 56, in __init__ self.graphs, self.token_dicts = self._LoadNXGraphs(scene_ids=load_scenes) File "/home/lixing/AirVLN_ws/AirVLN/utils/shorest_path_sensor.py", line 162, in _LoadNXGraphs G = ig.Graph.Read_Pickle(str(Path(self.nav_graph_path) / 'nav_graph_dict_{}.pkl'.format(scene_id))) File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 223, in _construct_graph_from_pickle_file raise IOError( OSError: Cannot load file. If fname is a file name, that filename may be incorrect. 2025-09-25 14:55:58 LoadNXGraphs of Scene 1 Process ForkServerProcess-6: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 206, in _construct_graph_from_pickle_file fp = open(fname, "rb") FileNotFoundError: [Errno 2] No such file or directory: '/home/lixing/AirVLN_ws/DATA/data/disceret/processed/nav_graph_10/nav_graph_dict_1.pkl' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 221, in _construct_graph_from_pickle_file result = pickle.loads(fname) TypeError: a bytes-like object is required, not 'str' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/home/lixing/AirVLN_ws/AirVLN/utils/env_vector.py", line 151, in _worker_env env = ENV( File "/home/lixing/AirVLN_ws/AirVLN/utils/env_utils.py", line 80, in __init__ self.shortest_path_sensor = ShortestPathSensor(args.nav_graph_path, args.token_dict_path, load_scenes) File "/home/lixing/AirVLN_ws/AirVLN/utils/shorest_path_sensor.py", line 56, in __init__ self.graphs, self.token_dicts = self._LoadNXGraphs(scene_ids=load_scenes) File "/home/lixing/AirVLN_ws/AirVLN/utils/shorest_path_sensor.py", line 162, in _LoadNXGraphs G = ig.Graph.Read_Pickle(str(Path(self.nav_graph_path) / 'nav_graph_dict_{}.pkl'.format(scene_id))) File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 223, in _construct_graph_from_pickle_file raise IOError( OSError: Cannot load file. If fname is a file name, that filename may be incorrect. 2025-09-25 14:55:58 LoadNXGraphs of Scene 1 Process ForkServerProcess-2: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 206, in _construct_graph_from_pickle_file fp = open(fname, "rb") FileNotFoundError: [Errno 2] No such file or directory: '/home/lixing/AirVLN_ws/DATA/data/disceret/processed/nav_graph_10/nav_graph_dict_1.pkl' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 221, in _construct_graph_from_pickle_file result = pickle.loads(fname) TypeError: a bytes-like object is required, not 'str' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/home/lixing/AirVLN_ws/AirVLN/utils/env_vector.py", line 151, in _worker_env env = ENV( File "/home/lixing/AirVLN_ws/AirVLN/utils/env_utils.py", line 80, in __init__ self.shortest_path_sensor = ShortestPathSensor(args.nav_graph_path, args.token_dict_path, load_scenes) File "/home/lixing/AirVLN_ws/AirVLN/utils/shorest_path_sensor.py", line 56, in __init__ self.graphs, self.token_dicts = self._LoadNXGraphs(scene_ids=load_scenes) File "/home/lixing/AirVLN_ws/AirVLN/utils/shorest_path_sensor.py", line 162, in _LoadNXGraphs G = ig.Graph.Read_Pickle(str(Path(self.nav_graph_path) / 'nav_graph_dict_{}.pkl'.format(scene_id))) File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 223, in _construct_graph_from_pickle_file raise IOError( OSError: Cannot load file. If fname is a file name, that filename may be incorrect. 2025-09-25 14:55:58 LoadNXGraphs of Scene 1 Process ForkServerProcess-4: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 206, in _construct_graph_from_pickle_file fp = open(fname, "rb") FileNotFoundError: [Errno 2] No such file or directory: '/home/lixing/AirVLN_ws/DATA/data/disceret/processed/nav_graph_10/nav_graph_dict_1.pkl' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 221, in _construct_graph_from_pickle_file result = pickle.loads(fname) TypeError: a bytes-like object is required, not 'str' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/home/lixing/AirVLN_ws/AirVLN/utils/env_vector.py", line 151, in _worker_env env = ENV( File "/home/lixing/AirVLN_ws/AirVLN/utils/env_utils.py", line 80, in __init__ self.shortest_path_sensor = ShortestPathSensor(args.nav_graph_path, args.token_dict_path, load_scenes) File "/home/lixing/AirVLN_ws/AirVLN/utils/shorest_path_sensor.py", line 56, in __init__ self.graphs, self.token_dicts = self._LoadNXGraphs(scene_ids=load_scenes) File "/home/lixing/AirVLN_ws/AirVLN/utils/shorest_path_sensor.py", line 162, in _LoadNXGraphs G = ig.Graph.Read_Pickle(str(Path(self.nav_graph_path) / 'nav_graph_dict_{}.pkl'.format(scene_id))) File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 223, in _construct_graph_from_pickle_file raise IOError( OSError: Cannot load file. If fname is a file name, that filename may be incorrect. 2025-09-25 14:55:58 LoadNXGraphs of Scene 1 Process ForkServerProcess-1: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 206, in _construct_graph_from_pickle_file fp = open(fname, "rb") FileNotFoundError: [Errno 2] No such file or directory: '/home/lixing/AirVLN_ws/DATA/data/disceret/processed/nav_graph_10/nav_graph_dict_1.pkl' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 221, in _construct_graph_from_pickle_file result = pickle.loads(fname) TypeError: a bytes-like object is required, not 'str' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/home/lixing/AirVLN_ws/AirVLN/utils/env_vector.py", line 151, in _worker_env env = ENV( File "/home/lixing/AirVLN_ws/AirVLN/utils/env_utils.py", line 80, in __init__ self.shortest_path_sensor = ShortestPathSensor(args.nav_graph_path, args.token_dict_path, load_scenes) File "/home/lixing/AirVLN_ws/AirVLN/utils/shorest_path_sensor.py", line 56, in __init__ self.graphs, self.token_dicts = self._LoadNXGraphs(scene_ids=load_scenes) File "/home/lixing/AirVLN_ws/AirVLN/utils/shorest_path_sensor.py", line 162, in _LoadNXGraphs G = ig.Graph.Read_Pickle(str(Path(self.nav_graph_path) / 'nav_graph_dict_{}.pkl'.format(scene_id))) File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 223, in _construct_graph_from_pickle_file raise IOError( OSError: Cannot load file. If fname is a file name, that filename may be incorrect. 2025-09-25 14:55:58 LoadNXGraphs of Scene 1 Process ForkServerProcess-8: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 206, in _construct_graph_from_pickle_file fp = open(fname, "rb") FileNotFoundError: [Errno 2] No such file or directory: '/home/lixing/AirVLN_ws/DATA/data/disceret/processed/nav_graph_10/nav_graph_dict_1.pkl' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 221, in _construct_graph_from_pickle_file result = pickle.loads(fname) TypeError: a bytes-like object is required, not 'str' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap self.run() File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/home/lixing/AirVLN_ws/AirVLN/utils/env_vector.py", line 151, in _worker_env env = ENV( File "/home/lixing/AirVLN_ws/AirVLN/utils/env_utils.py", line 80, in __init__ self.shortest_path_sensor = ShortestPathSensor(args.nav_graph_path, args.token_dict_path, load_scenes) File "/home/lixing/AirVLN_ws/AirVLN/utils/shorest_path_sensor.py", line 56, in __init__ self.graphs, self.token_dicts = self._LoadNXGraphs(scene_ids=load_scenes) File "/home/lixing/AirVLN_ws/AirVLN/utils/shorest_path_sensor.py", line 162, in _LoadNXGraphs G = ig.Graph.Read_Pickle(str(Path(self.nav_graph_path) / 'nav_graph_dict_{}.pkl'.format(scene_id))) File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/site-packages/igraph/io/files.py", line 223, in _construct_graph_from_pickle_file raise IOError( OSError: Cannot load file. If fname is a file name, that filename may be incorrect. Traceback (most recent call last): File "./src/vlnce_src/dagger_train.py", line 1449, in <module> collect_data(trainer, train_env, dagger_it) File "./src/vlnce_src/dagger_train.py", line 579, in collect_data train_env.next_minibatch(data_it=data_it) File "/home/lixing/AirVLN_ws/AirVLN/src/vlnce_src/env.py", line 341, in next_minibatch self.VectorEnvUtil.set_batch(self.batch) File "/home/lixing/AirVLN_ws/AirVLN/utils/env_vector.py", line 267, in set_batch results = [ File "/home/lixing/AirVLN_ws/AirVLN/utils/env_vector.py", line 268, in <listcomp> self._connection_read_fns[index]() for index in range(self._num_envs) File "/home/lixing/AirVLN_ws/AirVLN/utils/env_vector.py", line 58, in __call__ res = self.read_fn() File "/home/lixing/AirVLN_ws/AirVLN/utils/pickle5_multiprocessing.py", line 52, in recv buf = self.recv_bytes() File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/connection.py", line 216, in recv_bytes buf = self._recv_bytes(maxlength) File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/connection.py", line 414, in _recv_bytes buf = self._recv(4) File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/connection.py", line 379, in _recv chunk = read(handle, remaining) ConnectionResetError: [Errno 104] Connection reset by peer Exception ignored in: <function VectorEnvUtil.__del__ at 0x77328a0c4280> Traceback (most recent call last): File "/home/lixing/AirVLN_ws/AirVLN/utils/env_vector.py", line 250, in __del__ File "/home/lixing/AirVLN_ws/AirVLN/utils/env_vector.py", line 239, in close File "/home/lixing/AirVLN_ws/AirVLN/utils/env_vector.py", line 58, in __call__ File "/home/lixing/AirVLN_ws/AirVLN/utils/pickle5_multiprocessing.py", line 52, in recv File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/connection.py", line 216, in recv_bytes File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/connection.py", line 414, in _recv_bytes File "/home/lixing/anaconda3/envs/AirVLN/lib/python3.8/multiprocessing/connection.py", line 383, in _recv EOFError:
09-26
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值