转载-Blazor Debugging Improvements in Rider 2021.2

Rider2021.2带来了Blazor调试的重大改进,支持WebAssembly应用调试。用户现在可以在同一调试会话中同时调试C#代码和嵌入HTML的Razor代码。此外,Rider还支持复杂的多项目Blazor应用调试,并集成了浏览器开发者工具。

Blazor Debugging Improvements in Rider 2021.2

Table of Contents

The EAP versions of Rider 2021.2 have been released with a major improvement for Blazor developers: debugging WebAssembly (WASM) apps! This has been one of the top requested features since Blazor itself was released. In Rider 2021.2, you can now debug both Blazor Server apps and Blazor WASM apps!

The Debugging Experience

In Blazor apps, the overall debugging experience is the same as in other types of .NET apps in Rider. Debugging activities, features, and keyboard shortcuts remain the same, but now you can step through the both C# code and the Razor code that is intertwined with HTML. When starting a debugging session, the debugger launches and attaches to an instance of Chrome or Edge, including Edge on Ubuntu. From there, you can switch between the web UI and the debugger.

Blazor WASM Debugger in action

Browser Tools Integration

While in a debugging session, you can continue to use the browser’s developer tools as a nice supplement to Rider’s debugging tools. Browser tools work the same as before, but now you can use them in tandem with Rider’s debugger.

Blazor WASM tools works with the browser

Debug Configurations for Multiple Projects

Debugging more complex Blazor WASM apps with multiple projects works well, as Rider’s debugger works the same as in previous versions with Web API code and .NET class libraries. The optimal way to set up debugging multiple projects at the same time, is to create a Run Configuration that launches the API project first, followed by the UI project. In the Run | Edit Configurations the menu, create a Compound run configuration and add the two projects you want to launch.

Create Debug Configurations for multiple projects

Configuration Settings

And finally, there are configuration options for Blazor WASM debugging found under Settings | Build, Execution, Deployment | Debugger. Here you can enable Blazor debugging, Blazor WASM backend debugging, and the browser logs for Chromium based browsers.

Settings for WASM debugging

Rider 2021.2 has brought together excellent debugging features to make your debugging experience as smooth and pleasant as possible.

Download Rider 2021.2 EAP and give it a try! Let us know how you like to use the debugging tools. We’d love to hear your feedback.

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制方法。通过结合数据驱动技术与Koopman算子理论,将非线性系统动态近似为高维线性系统,进而利用递归神经网络(RNN)建模并实现系统行为的精确预测。文中详细阐述了模型构建流程、线性化策略及在预测控制中的集成应用,并提供了完整的Matlab代码实现,便于科研人员复现实验、优化算法并拓展至其他精密控制系统。该方法有效提升了纳米级定位系统的控制精度与动态响应性能。; 适合人群:具备自动控制、机器学习或信号处理背景,熟悉Matlab编程,从事精密仪器控制、智能制造或先进控制算法研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①实现非线性动态系统的数据驱动线性化建模;②提升纳米定位平台的轨迹跟踪与预测控制性能;③为高精度控制系统提供可复现的Koopman-RNN融合解决方案; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注Koopman观测矩阵构造、RNN训练流程与模型预测控制器(MPC)的集成方式,鼓励在实际硬件平台上验证并调整参数以适应具体应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值