TorchCRF使用笔记
1. 安装torchcrf,模型使用
安装:pip install TorchCRF
CRF的使用:在官网里有简单的使用说明
注意输入的格式。在其他地方下载的torchcrf有多个版本,有些版本有batch_first参数,有些没有,要看清楚有没有这个参数,默认batch_size是第一维度。
这个代码是我用来熟悉使用crf模型和损失函数用的,模拟多分类任务输入为随机数据和随机标签,所以最后的结果预测不能很好的跟标签对应。
import torch
import torch.nn as nn
import numpy as np
import random
from TorchCRF import CRF
from torch.optim import Adam
seed = 100
def seed_everything(seed=seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
num_tags = 5
model = CRF(num_tags, batch_first=True) # 这里根据情况而定
seq_len = 3
batch_size = 50
seed_everything()
trainset = torch.randn(batch_size, seq_len, num_tags)

本文介绍了如何在PyTorch中安装和使用TorchCRF库,重点讲解了CRF模型参数设置、自定义掩码及损失函数的计算。作者探讨了如何将CRF的NLL损失与交叉熵结合,并通过自适应权重优化训练过程。虽然在单任务中效果不显著,但对于多任务学习提供了有价值的方法。
最低0.47元/天 解锁文章
6991





