一.背景
PHP的$和->让人输入的手疼(PHP确实非常简洁和强大,适合WEB编程),Ruby的#、@、@@也好不到哪里(OO人员最该学习的一门语言)。
Python应该是写起来最舒服的动态语言了,一下是一些读书笔记,最后会介绍一下高级的用法:Mixin、Open Class、Meta Programming和AOP。
文中有些地方是用2.7开发的,如果您安装的是3.x,有几点需要注意:
- print "xxx" 要换成 print("xxx")
- __metaclass__ = type 删除掉。
二.类型和表达式部分
2.1你好,世界!
1 # coding=utf-8 2 3 print "你好,世界。"
2.2乘方
1 print 2**10
2.3变量
1 var = 1 2 print var 3 4 var = "段光伟" 5 print var
注:这里的var = xxxx不叫变量赋值,而叫变量绑定,python维护了一个符号表(变量名)以及符合对应的值,这个对应关系就叫做绑定,一个符号可以绑定任意类型的值。
2.4获取用户输入
1 #获取用户输入
2 x = input("x:")
3 y = input("y:")
4
5 print x*y
注:input接受的是Python代码,输入中可以访问当前执行环境中的变量,如果想获取原始输入需要使用 raw_input。
2.5函数定义
1 def say_b(): 2 print "b"
2.6强类型
Javascript和Php是弱类型的,Python和Ruby是强类型的。弱类型允许不安全的类型转换,强类型则不允许。
1 #1 + “1” 这行代码在Python中会报错。
2 print 1 + int("1")
3 print str(1) + "1"
2.7 字符串
1 #字符串 2 print '''' 段 3 光 4 伟''' 5 print r'C:\log.txt' 6 print 'C:\\log.txt'
2.8序列
这里先介绍三种序列:列表、元祖和字符串。
序列通用操作
1 seq = "0123456789" 2 print seq[0] #从0开始编码。 3 print seq[-1] #支持倒着数数,-1代表倒数第一。 4 print seq[1:5] #支持分片操作,seq[start:end],start会包含在结果中,end不会包含在结果中。 5 print seq[7:] #seq[start:end]中的end可以省略。 6 print seq[-3:] #分片也支持负数。 7 print seq[:3] #seq[start:end]中的start也可以省略。 8 print seq[:] #全部省略会复制整个序列。 9 print seq[::2] #支持步长。 10 print seq[::-2] #支持负步长。 11 print seq[9:1:-1] #支持负步长。 12 print [1, 2, 3] + [4, 5, 6] # 序列支持相加,这解释了为啥字符串可以相加。 13 print [1, 2, 3] * 3 #序列支持相乘,这解释了为啥字符串可以相称。 14 print [None] * 10 #生成一个空序列。 15 print 1 in [1, 2, 3] #成员判断。
可变的列表
1 data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; 2 3 data[0] = "a" #修改元素。 4 print data 5 data[0] = 0 6 7 del data[10] #删除元素。 8 print data 9 10 del data[8:] #分片删除。 11 print data 12 13 data[8:] = [8, 9, 10] #分片赋值 14 print data
不可变的元祖
1 print (1, 2) #元祖以小括号形式声明。 2 print (1,) #一个元素的元祖。
2.9字符串格式化
1 print "% 10s" % "----"
2
3 print '''
4 %(title)s
5 %(body)s
6 ''' % {"title": "标题", "body": "内容"}
2.10字典
1 print {"title": "title", "body": "body"}
2 print dict(title = "title", body = "body")
3 print dict([("title", "title"), ("body", "body")])
1 dic = {"title": "title", "body": "body"};
2 print dic["title"]
3 del dic["title"]
4 print dic
2.112.12print 语句
1 print 'a', 'b' #print可以接受多个参数,参数的输出之间以空格相隔。 2 print 'a', #如果逗号之后没有参数,则不会换行。 3 print 'b'
2.12序列解包
1 x, y, z = 1, 2, 3 2 print x, y, z 3 (x, y, z) = (1, 2, 3) 4 print x, y, z 5 (x, y, z) = [1, 2, 3] 6 print x, y, z
2.13bool值
1 #下面的输入全部返回False。
2 print(bool(None))
3 print(bool(()))
4 print(bool([]))
5 print(bool({}))
6 print(bool(""))
7 print(bool(0))
8
9 #虽然这些值在条件运算中会当做False,但是本身不等于False。
10 print(True and "")
11 print(not "")
12 print(False == "")
13 print(False == 0) #0除外,bool类型的内部表示就是int类型。
2.14bool运算
1 print(0 < 1 < 10) 2 print(0 < 1 and 1 < 10) 3 print(not(0 > 1 > 10)) 4 print(not(0 > 1 or 1 > 10))
2.15语句块
:开始语句快,缩进的所有内容都是一个语句块。
1 if(10 > 1):
2 print("10 > 1")
3 else:
4 print("不可能发生")
2.16三元运算符
1 print("10 > 1" if 10 > 1 else "不可能发生")
2.17相等比较
1 #== 和 is的差别,==比较的是内容,is比较的是引用。 2 x = [1, 2, 3] 3 y = x 4 z = [1, 2, 3] 5 print(x == y) 6 print(x == z) 7 print(x is y) 8 print(x is z)
2.18循环
1 #for循环类似C#的foreach,注意for后面是没有括号的,python真是能简洁就尽量简洁。
2 for x in range(1, 10):
3 print(x)
4
5 for key in {"x":"xxx"}:
6 print(key)
7
8 for key, value in {"x":"xxx"}.items():
9 print(key, value)
10
11 for x, y, z in [["a", 1, "A"],["b", 2, "B"]]:
12 print(x, y, z)
1 #带索引的遍历
2 for index, value in enumerate(range(0, 10)):
3 print(index, value)
4
5 #好用的zip方法
6 for x, y in zip(range(1, 10), range(1, 10)):
7 print(x, y)
8
9 #循环中的的else子句
10 from math import sqrt
11 for item in range(99, 1, -1):
12 root = sqrt(item)
13 if(root == int(root)):
14 print(item)
15 break
16 else:
17 print("没有执行break语句。")
pass、exec和eval
1 #pass、exec、eval
2 if(1 == 1):
3 pass
4
5 exec('print(x)', {"x": "abc"})
6 print(eval('x*2', {"x": 5}))
三.函数部分
形参和实参之间是按值传递的,当然有些类型的值是引用(对象、列表和字典等)。
1 # 基本函数定义。
2 def func():
3 print("func")
4
5 func()
6
7 # 带返回值的函数。
8 def func_with_return():
9 return ("func_with_return")
10
11 print(func_with_return())
12
13 # 带多个返回值的函数。
14 def func_with_muti_return():
15 return ("func_with_muti_return", "func_with_muti_return")
16
17 print(func_with_muti_return())
18
19 # 位置参数
20 def func_with_parameters(x, y):
21 print(x, y)
22
23 func_with_parameters(1, 2)
24
25 # 收集多余的位置参数
26 def func_with_collection_rest_parameters(x, y, *rest):
27 print(x, y)
28 print(rest)
29
30 func_with_collection_rest_parameters(1, 2, 3, 4, 5)
31
32 #命名参数
33 def func_with_named_parameters(x, y, z):
34 print(x, y, z)
35
36 func_with_named_parameters(z = 1, y = 2, x = 3)
37
38 #默认值参数
39 def func_with_default_value_parameters(x, y, z = 3):
40 print(x, y, z)
41
42 func_with_default_value_parameters(y = 2, x = 1)
43
44 #收集命名参数
45 def func_with_collection_rest_naned_parameters(*args, **named_agrs):
46 print(args)
47 print(named_agrs)
48
49 func_with_collection_rest_naned_parameters(1, 2, 3, x = 4, y = 5, z = 6)
50
51 #集合扁平化
52 func_with_collection_rest_naned_parameters([1, 2, 3], {"x": 4, "y": 4, "z": 6}) #这会导致args[0]指向第一个实参,args[1]指向第二个实参。
53 func_with_collection_rest_naned_parameters(*[1, 2, 3], **{"x": 4, "y": 4, "z": 6}) #这里的执行相当于func_with_collection_rest_naned_parameters(1, 2, 3, x = 4, y = 5, z = 6)。
四.作用域
1 # coding=utf-8 2 3 # 只有函数执行才会开启一个作用域。 4 if(2 > 1): 5 x = 1 6 7 print(x) # 会输出1。 8 9 10 # 使用vars()函数可以访问当前作用域包含的变量。 11 x = 1 12 print(vars()["x"]) 13 14 # 使用globals()函数可以访问全局作用域。 15 x = 1 16 17 def func(): 18 print(globals()["x"]) 19 20 func() 21 22 # 使用locals()函数可以访问局部作用域。 23 def func(): 24 x = 2 25 print(locals()["x"]) 26 27 func() 28 29 # 每个函数定义时都会记住所在的作用域。 30 # 函数执行的时候会开启一个新的作用域,函数内变量访问的规则是:先访问当前作用域,如果没有就访问函数定义时的作用域,递归直到全局作用域。 31 x = 1 32 33 def func(): 34 y = 2 35 print(x, y) # 输出1 2 36 37 func() 38 39 40 # 变量赋值始终访问的是当前作用域。 41 x = 1 42 43 def func(): 44 x = 2 45 y = 2 46 print(x, y) # 输出2 2 47 48 func() 49 print(x) #输出 1 50 51 # 局部变量会覆盖隐藏全局变量,想访问全局变量可以采用global关键字或globals()函数。 52 x = 1 53 54 def func(): 55 global x 56 x = 2 57 y = 2 58 print(x, y) # 输出2 2 59 60 func() 61 print(x) #输出 2
1 # python支持闭包 2 def func(x): 3 def inner_func(y): 4 print(x + y) 5 6 return inner_func 7 8 inner_func = func(10) 9 inner_func(1) 10 inner_func(2)
1 #函数作为对象 2 def func(fn, arg): 3 fn(arg) 4 5 func(print, "hello") 6 func(lambda arg : print(arg), "hello")
五.模块
几个模块相关的规则:
- 一个文件代表一个模块。
- 可以用import module导入模块,也可以用form module import member导入模块的成员。
- 如果导入的是module,必须使用module.member进行访问;如果导入的member,可以直接访问member。
- 导入的module或member都会变成当前module的member。
b.py
1 # coding=utf-8 2 3 print __name__ 4 5 def say_b(): 6 print "b"
a.py
1 # coding=utf-8 2 3 import b 4 from b import * 5 6 print __name__ 7 8 def say_a(): 9 print "a"
test.py
1 # coding=utf-8 2 3 import a 4 5 print __name__ 6 7 a.say_a(); 8 a.say_b(); 9 a.b.say_b()
输出
1 b 2 a 3 __main__ 4 a 5 b 6 b
六.异常管理
1 # coding=utf-8
2
3 # 自定义异常
4 class HappyException(Exception):
5 pass
6
7 # 引发和捕获异常
8 try:
9 raise HappyException
10 except:
11 print("HappyException")
12
13 try:
14 raise HappyException()
15 except:
16 print("HappyException")
17
18 # 捕获多种异常
19 try:
20 raise HappyException
21 except (HappyException, TypeError):
22 print("HappyException")
23
24 # 重新引发异常
25 try:
26 try:
27 raise HappyException
28 except (HappyException, TypeError):
29 raise
30 except:
31 print("HappyException")
32
33 #访问异常实例
34 try:
35 raise HappyException("都是我的错")
36 except (HappyException, TypeError), e:
37 print(e)
38
39 #按类型捕获
40 try:
41 raise HappyException
42 except HappyException:
43 print("HappyException")
44 except TypeError:
45 print("TypeError")
46
47 #全面捕获
48 try:
49 raise HappyException
50 except:
51 print("HappyException")
52
53 #没有异常的else
54 try:
55 pass
56 except:
57 print("HappyException")
58 else:
59 print("没有异常")
60
61 #总会执行的final
62 try:
63 pass
64 except:
65 print("HappyException")
66 else:
67 print("没有异常")
68 finally:
69 print("总会执行")
七.面向对象
7.1先上一张图

7.2几个规则:
- 一切都是对象,python中一切都是对象,每个对象都包含一个__class__属性以标记其所属类型。
- 每个对象(记得一切都是对象啊)都包含一个__dict__属性以存储所有属性和方法。
- 每个类型都包含一个__bases__属性以标记其父类。
- 属性和方法的访问规则:依次搜索instance、子类、父类、父类的父类、直到object的__dict__,如果找到就返回。
- 属性和方法的设置规则:直接设置instance.__dict__。
- 以上属性和方法访问或设置规则没有考虑“魔法方法”,下文会解释。
7.3 示例
1 # coding=utf-8
2
3 __metaclass__ = type
4
5 # 类型定义
6 # 实例方法必的第一个参数代表类型实例,类似其他语言的this。
7 class Animal:
8 name = "未知" # 属性定义。
9
10 def __init__(self, name): #构造方法定义。
11 self.name = name
12
13 def getName(self): # 实例方法定义。
14 return self.name
15
16 def setName(self, value):
17 self.name = value
18
19 print(Animal.name) # 未知
20 print(Animal.__dict__["name"]) # 未知
21
22 animal = Animal("狗狗")
23 print(animal.name) # 狗狗
24 print(animal.__dict__["name"]) # 狗狗
25 print(Animal.name) # 未知
26 print(Animal.__dict__["name"]) # 未知
27 print(animal.__class__.name) # 未知
28 print(animal.__class__.__dict__["name"]) # 未知
1 # 类型定义中的代码会执行,是一个独立的作用域。
2 class TestClass:
3 print("类型定义中") #类型定义中
7.4绑定方法和未绑定方法
1 class TestClass:
2 def method(self):
3 print("测试方法")
4
5 test = TestClass()
6 print(TestClass.method) #<unbound method TestClass.method>
7 print(test.method) #<bound method TestClass.method of <__main__.TestClass object at 0x021B46D0>>
8
9 TestClass.method(test) #测试方法
10 test.method() #测试方法
绑定方法已经绑定了对象示例,调用的时刻不用也不能传入self参数了。
注:使用对象访问实例方法为何会返回绑定方法?这个还得等到学完“魔法方法”才能解释,内部其实是拦截对方法成员的访问,返回了一个Callable对象。
7.5私有成员
1 # 私有成员
2 class TestClass:
3 __private_property = 1
4
5 def __private_method():
6 pass
7
8 print(TestClass.__dict__) # {'__module__': '__main__', '_TestClass__private_method': <function __private_method at 0x0212B970>, '_TestClass__private_property': 1
难怪访问不了了,名称已经被修改了,增加了访问的难度而已。
7.6多重继承
1 #多重继承 2 class Base1: 3 pass 4 5 class Base2: 6 pass 7 8 class Child(Base2, Base1): 9 pass 10 11 child = Child() 12 print(isinstance(child, Child)) # True 13 print(isinstance(child, Base2)) # True 14 print(isinstance(child, Base1)) # True
如果继承的多个类型之间有重名的成员,左侧的基类优先级要高,上例子Base2会胜出。
7.7接口那里去了,鸭子类型比接口更好用。
1 class TestClass1:
2 def say(self):
3 print("我是鸭子1")
4
5 class TestClass2:
6 def say(self):
7 print("我是鸭子2")
8
9 def duck_say(duck):
10 duck.say()
11
12 duck_say(TestClass1()) # 我是鸭子1
13 duck_say(TestClass2()) # 我是鸭子2
7.8调用父类
1 # 调用父类
2 class Base:
3 def say(self):
4 print("Base")
5
6 class Child(Base):
7 def say(self):
8 Base.say(self)
9 super(Child, self).say()
10 print("Child")
11
12 child = Child()
13 child.say()
八.魔法方法
对象构造相关:__new__、__init__、__del__。
1 from os.path import join 2 3 class FileObject: 4 '''Wrapper for file objects to make sure the file gets closed on deletion.''' 5 6 def __init__(self, filepath='~', filename='sample.txt'): 7 # open a file filename in filepath in read and write mode 8 self.file = open(join(filepath, filename), 'r+') 9 10 def __del__(self): 11 self.file.close() 12 del self.file
运算符重载:所有运算符都能重载。
1 class Word(str):
2 '''Class for words, defining comparison based on word length.'''
3
4 def __new__(cls, word):
5 # Note that we have to use __new__. This is because str is an immutable
6 # type, so we have to initialize it early (at creation)
7 if ' ' in word:
8 print "Value contains spaces. Truncating to first space."
9 word = word[:word.index(' ')] # Word is now all chars before first space
10 return str.__new__(cls, word)
11
12 def __gt__(self, other):
13 return len(self) > len(other)
14
15 def __lt__(self, other):
16 return len(self) < len(other)
17
18 def __ge__(self, other):
19 return len(self) >= len(other)
20
21 def __le__(self, other):
22 return len(self) <= len(other)
23
24 print(Word("duan") > Word("wei"))
属性访问。
1 class AccessCounter:
2 '''A class that contains a value and implements an access counter.
3 The counter increments each time the value is changed.'''
4
5 def __init__(self, value):
6 super(AccessCounter, self).__setattr__('counter', 0)
7 super(AccessCounter, self).__setattr__('value', value)
8
9 def __setattr__(self, name, value):
10 if name == 'value':
11 super(AccessCounter, self).__setattr__('counter', self.counter + 1)
12 # Make this unconditional.
13 # If you want to prevent other attributes to be set, raise AttributeError(name)
14 super(AccessCounter, self).__setattr__(name, value)
15
16 def __delattr__(self, name):
17 if name == 'value':
18 super(AccessCounter, self).__setattr__('counter', self.counter + 1)
19 super(AccessCounter, self).__delattr__(name)
集合实现。
1 class FunctionalList: 2 '''A class wrapping a list with some extra functional magic, like head, 3 tail, init, last, drop, and take.''' 4 5 def __init__(self, values=None): 6 if values is None: 7 self.values = [] 8 else: 9 self.values = values 10 11 def __len__(self): 12 return len(self.values) 13 14 def __getitem__(self, key): 15 # if key is of invalid type or value, the list values will raise the error 16 return self.values[key] 17 18 def __setitem__(self, key, value): 19 self.values[key] = value 20 21 def __delitem__(self, key): 22 del self.values[key] 23 24 def __iter__(self): 25 return iter(self.values) 26 27 def __reversed__(self): 28 return FunctionalList(reversed(self.values)) 29 30 def append(self, value): 31 self.values.append(value) 32 def head(self): 33 # get the first element 34 return self.values[0] 35 def tail(self): 36 # get all elements after the first 37 return self.values[1:] 38 def init(self): 39 # get elements up to the last 40 return self.values[:-1] 41 def last(self): 42 # get last element 43 return self.values[-1] 44 def drop(self, n): 45 # get all elements except first n 46 return self.values[n:] 47 def take(self, n): 48 # get first n elements 49 return self.values[:n]
可调用对象,像方法一样调用对象。
1 class Entity: 2 '''Class to represent an entity. Callable to update the entity's position.''' 3 4 def __init__(self, size, x, y): 5 self.x, self.y = x, y 6 self.size = size 7 8 def __call__(self, x, y): 9 '''Change the position of the entity.''' 10 self.x, self.y = x, y 11 print(x, y) 12 13 entity = Entity(5, 1, 1) 14 entity(2, 2)
资源管理
1 class Closer:
2 def __enter__(self):
3 return self
4
5 def __exit__(self, exception_type, exception_val, trace):
6 print("清理完成")
7 return True;
8
9 with Closer() as closer:
10 pass
对象描述符。
1 class Meter(object): 2 '''Descriptor for a meter.''' 3 4 def __init__(self, value=0.0): 5 self.value = float(value) 6 def __get__(self, instance, owner): 7 return self.value 8 def __set__(self, instance, value): 9 self.value = float(value) 10 11 class Foot(object): 12 '''Descriptor for a foot.''' 13 14 def __get__(self, instance, owner): 15 return instance.meter * 3.2808 16 def __set__(self, instance, value): 17 instance.meter = float(value) / 3.2808 18 19 class Distance(object): 20 '''Class to represent distance holding two descriptors for feet and 21 meters.''' 22 meter = Meter() 23 foot = Foot()
九.Mixin(也叫掺入)
9.1掺入模块:playable.py
1 # coding=utf-8
2
3 def paly(self):
4 print("游戏中...")
9.2掺入目标模块:test.py
1 # coding=utf-8 2 3 class Animal: 4 from playable import paly 5 6 animal = Animal() 7 animal.paly() # 游戏中...
十.Open Class(打开类型,从新定义成员)
1 #coding:utf-8
2
3 class TestClass:
4 def method1(self):
5 print("方法1")
6
7 def method2(self):
8 print("方法2")
9
10 TestClass.method2 = method2
11
12 test = TestClass()
13 test.method1() # 方法1
14 test.method2() # 方法2
十一.Meta Programming(元编程)
1 TestClass = type("TestClass", (object,), {
2 "say": lambda self : print("你好啊")
3 })
4
5 test = TestClass()
6 test.say()
1 def getter(name):
2 def getterMethod(self):
3 return self.__getattribute__(name)
4 return getterMethod
5
6 def setter(name):
7 def setterMethod(self, value):
8 self.__setattr__(name, value)
9 return setterMethod
10
11 class TestClass:
12 getName = getter("name")
13 setName = setter("name")
14
15 test = TestClass()
16 test.setName("段光伟")
17 print(test.getName())
十二.AOP(面向切面编程)
内容比较多:
十三.背景
学习了Javascript才知道原来属性的取值和赋值操作访问的“位置”可能不同、还有词法作用域这个东西,这也是我学习任何一门语言会注意的两个知识点,Python的作用域和Javascript几乎一致,这里就不做解释,本文重点介绍一下三个概念:
- 属性取值和赋值过程
- 属性描述符
- 装饰器
本文最好会利用这些知识介绍:如何实现自定义的@staticmethod和@classmethod。
十四.属性取值和赋值过程

- 一切皆是对象,类型也是对象。
- 对象包含一个__class__属性指向其所属类型。
- 对象包含一个__dict__属性指向其所包含的成员(属性和方法)。
14.1取值过程(下面是伪代码)
1 __getattribute__(property) logic: 2 3 descripter = find first descripter in class and bases's dict(property) 4 if descripter: 5 return descripter.__get__(instance, instance.__class__) 6 else: 7 if value in instance.__dict__ 8 return value 9 10 value = find first value in class and bases's dict(property) 11 if value is a function: 12 return bounded function(value) 13 else: 14 return value 15 16 raise AttributeNotFundedException
14.2赋值过程(下面是伪代码)
1 __setattr__(property, value)logic: 2 3 descripter = find first descripter in class and bases's dict(property) 4 if descripter: 5 descripter.__set__(instance, value) 6 else: 7 instance.__dict__[property] = value
14.3根据取值和赋值过程的逻辑可以得出以下结论
- 赋值和取值的位置可能不同。
- 取值过程的伪代码第11行会返回绑定方法(我们在Javascript经常会让某个函数绑定到指定的作用域,和这个概念是一样的)。
- 取值和赋值过程都会先查找属性描述符,也就是说:属性描述的优先级最高,下文会介绍属性描述符。
十五.属性描述符
什么是属性描述符?属性描述符就是一个类型,实现了三个魔法方法而已:__set__、__get__和__del__,属性描述符一般不会独立使用,必须存储在类型的__dict__中才有意义,这样才会参与到属性的取值和赋值过程,具体参见上文。
15.1属性描述符
1 #属性描述符 2 class Descripter: 3 def __get__(self, instance, owner): 4 print(self, instance, owner) 5 6 def __set__(self, instance, value): 7 print(self, instance, value)
15.2测试代码
1 class TestClass:
2 Des = Descripter()
3
4
5 def __getattribute__(self, name):
6 print("before __getattribute__")
7 return super(TestClass, self).__getattribute__(name)
8 print("after __getattribute__")
9
10 def __setattr__(self, name, value):
11 print("before __setattr__")
12 super(TestClass, self).__setattr__(name, value)
13 print("after __setattr__")
14
15 test1 = TestClass()
16 test2 = TestClass()
17
18 test1.Des = None
19 test2.Des
15.3输出结果
1 before __setattr__ 2 <__main__.Descripter object at 0x01D9A030> <__main__.TestClass object at 0x01D9A090> None 3 after __setattr__ 4 before __getattribute__ 5 <__main__.Descripter object at 0x01D9A030> <__main__.TestClass object at 0x01D9A0B0> <class '__main__.TestClass'>
15.4结论
类型的多个实例共享同一个属性描述符实例,属性描述符的优先级高于实例的__dict__,具体自己可以测试一下。
十六.装饰器(AOP)
16.1最基本的函数装饰器
1 print("\n最基本的函数装饰器\n")
2 def log(fun):
3 def return_fun(*args, **kargs):
4 print("开始输出日志")
5
6 fun(*args, **kargs)
7
8 print("结束输出日志")
9
10 return return_fun
11
12 @log
13 def say(message):
14 print(message)
15
16 say("段光伟")
17
18 print("\n等价方法\n")
19
20 def say(message):
21 print(message)
22
23 say = log(say)
24 say("段光伟")
16.2带参数的函数装饰器
1 print("\n带参数的函数装饰器\n")
2 def log(header, footer):
3 def log_to_return(fun):
4 def return_fun(*args, **kargs):
5 print(header)
6
7 fun(*args, **kargs)
8
9 print(footer)
10
11 return return_fun
12 return log_to_return
13
14 @log("开始输出日志", "结束输出日志")
15 def say(message):
16 print(message)
17
18 say("段光伟")
19
20 print("\n等价方法\n")
21
22 def say(message):
23 print(message)
24
25 say = log("开始输出日志", "结束输出日志")(say)
26 say("段光伟")
16.3最基本的类型装饰器
1 print("\n最基本的类型装饰器\n")
2 def flyable(cls):
3 def fly(self):
4 print("我要飞的更高")
5 cls.fly = fly
6
7 return cls
8
9 @flyable
10 class Man:
11 pass
12
13 man = Man()
14 man.fly()
15
16 print("\n等价方法\n")
17
18 class Man:
19 pass
20
21 Man = flyable(Man)
22
23 man = Man()
24 man.fly()
16.4带参数的类型装饰器
1 print("\n带参数的类型装饰器\n")
2 def flyable(message):
3 def flyable_to_return(cls):
4 def fly(self):
5 print(message)
6 cls.fly = fly
7
8 return cls
9 return flyable_to_return
10
11 @flyable("我要飞的更高")
12 class Man:
13 pass
14
15 man = Man()
16 man.fly()
17
18 print("\n等价方法\n")
19
20 class Man:
21 pass
22
23 Man = flyable("我要飞的更高")(Man)
24
25 man = Man()
26 man.fly()
备注:可以使用多个装饰器,不过要保证签名的装饰器也是返回的一个方法或类型。
十七.自己实现@staticmethod和@classmethod
理解了属性的取值和赋值过程,开发自定义@staticmethod和@classmethod就不成问题了,let up do it!
17.1代码
1 class MyStaticObject:
2 def __init__(self, fun):
3 self.fun = fun;
4
5 def __get__(self, instance, owner):
6 return self.fun
7
8 def my_static_method(fun):
9 return MyStaticObject(fun)
10
11 class MyClassObject:
12 def __init__(self, fun):
13 self.fun = fun;
14
15 def __get__(self, instance, owner):
16 def class_method(*args, **kargs):
17 return self.fun(owner, *args, **kargs)
18
19 return class_method
20
21 def my_class_method(fun):
22 return MyClassObject(fun)
23
24 class C(object):
25 """docstring for C"""
26
27 def test_instance_method(self):
28 print(self)
29
30 @staticmethod
31 def test_static_method(message):
32 print(message)
33
34 @my_static_method
35 def test_my_static_method(message):
36 print(message)
37
38 @classmethod
39 def test_class_method(cls):
40 print(cls)
41
42 @my_class_method
43 def test_my_class_method(cls):
44 print(cls)
45
46 print("\n实例方法测试")
47 c = C()
48 print(C.test_instance_method)
49 print(C.__dict__["test_instance_method"])
50 print(c.test_instance_method)
51 C.test_instance_method(c)
52 c.test_instance_method()
53
54 print("\n静态方法测试")
55 print(C.test_static_method)
56 print(C.__dict__["test_static_method"])
57 print(c.test_static_method)
58 C.test_static_method("静态方法测试")
59 c.test_static_method("静态方法测试")
60
61 print("\n自定义静态方法测试")
62 print(C.test_my_static_method)
63 print(C.__dict__["test_my_static_method"])
64 print(c.test_my_static_method)
65 C.test_my_static_method("自定义静态方法测试")
66 c.test_my_static_method("自定义静态方法测试")
67
68 print("\n类方法测试")
69 print(C.test_class_method)
70 print(C.__dict__["test_class_method"])
71 print(c.test_class_method)
72 C.test_class_method()
73 c.test_class_method()
74
75 print("\n自定义类方法测试")
76 print(C.test_my_class_method)
77 print(C.__dict__["test_my_class_method"])
78 print(c.test_my_class_method)
79
80 C.test_my_class_method()
81 c.test_my_class_method()
82
83 print("\n对象上的方法不会返回绑定方法,对象描述符也不会起作用")
84 def test(self):
85 print(self)
86
87 c.test = test
88
89 c.test("测试")
17.2结果
1 实例方法测试 2 <function C.test_instance_method at 0x01D3D8A0> 3 <function C.test_instance_method at 0x01D3D8A0> 4 <bound method C.test_instance_method of <__main__.C object at 0x01D8B5B0>> 5 <__main__.C object at 0x01D8B5B0> 6 <__main__.C object at 0x01D8B5B0> 7 8 静态方法测试 9 <function C.test_static_method at 0x01D69108> 10 <staticmethod object at 0x01D8B4F0> 11 <function C.test_static_method at 0x01D69108> 12 静态方法测试 13 静态方法测试 14 15 自定义静态方法测试 16 <function C.test_my_static_method at 0x01D69078> 17 <__main__.MyStaticObject object at 0x01D8B510> 18 <function C.test_my_static_method at 0x01D69078> 19 自定义静态方法测试 20 自定义静态方法测试 21 22 类方法测试 23 <bound method type.test_class_method of <class '__main__.C'>> 24 <classmethod object at 0x01D8B530> 25 <bound method type.test_class_method of <class '__main__.C'>> 26 <class '__main__.C'> 27 <class '__main__.C'> 28 29 自定义类方法测试 30 <function MyClassObject.__get__.<locals>.class_method at 0x01D5EDF8> 31 <__main__.MyClassObject object at 0x01D8B550> 32 <function MyClassObject.__get__.<locals>.class_method at 0x01D5EDF8> 33 <class '__main__.C'> 34 <class '__main__.C'> 35 36 对象上的方法不会返回绑定方法,对象描述符也不会起作用 37 测试


2万+

被折叠的 条评论
为什么被折叠?



