/**
* 二叉树节点类
*/
public static class BinaryTreeNode {
int value;
BinaryTreeNode left;
BinaryTreeNode right;
}
/**
* 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二节树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
*
* @param preorder 前序遍历
* @param inorder 中序遍历
* @return 树的根结点
*/
public static BinaryTreeNode construct(int[] preorder, int[] inorder) {
// 输入的合法性判断,两个数组都不能为空,并且都有数据,而且数据的数目相同
if(preorder==null||inorder==null||preorder.length!=inorder.length||preorder.length<1){
return null;
}
return construct(preorder, 0, preorder.length - 1, inorder, 0, inorder.length - 1);
}
/**
* 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二节树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
*
* @param preorder 前序遍历
* @param ps 前序遍历的开始位置
* @param pe 前序遍历的结束位置
* @param inorder 中序遍历
* @param is 中序遍历的开始位置
* @param ie 中序遍历的结束位置
* @return 树的根结点
*/
public static BinaryTreeNode construct(int[] preorder, int ps, int pe, int[] inorder, int is, int ie) {
// 开始位置大于结束位置,说明已经没有处理的元素了
if(ps > pe){
return null;
}
// 取前序遍历的第一个数字,就是当前的根结点
int value = preorder[ps];
int index = is;
// 在中序遍历中找到根节点的位置
while(index<ie && value!=inorder[index]){
index++;
}
// 如果在整个中序遍历的数组中没有找到,说明输入的参数是不合法的,抛出异常
if (index > ie) {
throw new RuntimeException("Invalid input");
}
// 创建当前的根结点,并且为结点赋值
BinaryTreeNode node = new BinaryTreeNode();
node.value = value;
// 递归构建当前根结点的左子树,左子树的元素个数:index-is+1个
// 左子树对应的前序遍历的位置在[ps+1, ps+index-is]
// 左子树对应的中序遍历的位置在[is, index-1]
node.left = construct(preorder,ps+1,ps+index-is,inorder,is,index-1);
// 递归构建当前根结点的右子树,右子树的元素个数:ie-index个
// 右子树对应的前序遍历的位置在[ps+index-is+1, pe]
// 右子树对应的中序遍历的位置在[index+1, ie]
node.right = construct(preorder,ps+1,ps+index-is,inorder,is,index-1);
return node;
}
// 中序遍历二叉树
public static void printTree(BinaryTreeNode root) {
if (root != null) {
printTree(root.left);
System.out.print(root.value + " ");
printTree(root.right);
}
}
// 普通二叉树
// 1
// / \
// 2 3
// / / \
// 4 5 6
// \ /
// 7 8
private static void test1() {
int[] preorder = {1, 2, 4, 7, 3, 5, 6, 8};
int[] inorder = {4, 7, 2, 1, 5, 3, 8, 6};
BinaryTreeNode root = construct(preorder, inorder);
printTree(root);
}
// 所有结点都没有右子结点
// 1
// /
// 2
// /
// 3
// /
// 4
// /
// 5
private static void test2() {
int[] preorder = {1, 2, 3, 4, 5};
int[] inorder = {5, 4, 3, 2, 1};
BinaryTreeNode root = construct(preorder, inorder);
printTree(root);
}
// 所有结点都没有左子结点
// 1
// \
// 2
// \
// 3
// \
// 4
// \
// 5
private static void test3() {
int[] preorder = {1, 2, 3, 4, 5};
int[] inorder = {1, 2, 3, 4, 5};
BinaryTreeNode root = construct(preorder, inorder);
printTree(root);
}
// 树中只有一个结点
private static void test4() {
int[] preorder = {1};
int[] inorder = {1};
BinaryTreeNode root = construct(preorder, inorder);
printTree(root);
}
// 完全二叉树
// 1
// / \
// 2 3
// / \ / \
// 4 5 6 7
private static void test5() {
int[] preorder = {1, 2, 4, 5, 3, 6, 7};
int[] inorder = {4, 2, 5, 1, 6, 3, 7};
BinaryTreeNode root = construct(preorder, inorder);
printTree(root);
}
// 输入空指针
private static void test6() {
construct(null, null);
}
// 输入的两个序列不匹配
private static void test7() {
int[] preorder = {1, 2, 4, 5, 3, 6, 7};
int[] inorder = {4, 2, 8, 1, 6, 3, 7};
BinaryTreeNode root = construct(preorder, inorder);
printTree(root);
}
剑指offer之重建二叉树
最新推荐文章于 2021-07-26 00:38:12 发布