方差分析泛应用于商业、经济、医学、农业等诸多领域的数量分析研究中。例如商业广告宣传方面,广告效果可能会受广告式、地区规模、播放时段、播放频率等多个因素的影响,通过方差分析研究众多因素中,哪些是主要的以及如何产生影响等。而在经济管理中,方差分析常用于分析变量之间的关系,如人民币汇率对股票收益率的影响、存贷款利率对债券市场的影响,等等。
协方差是在方差分析的基础上,综合回归分析的方法,研究如何调节协变量对因变量的影响效应,从而更加有效地分析实验处理效应的一种统计技术。
8.1单因素方差分析及R实现
(1)正态性检验
对数据的正态性,利用Shapiro-Wilk正态检验方法(W检验),它通常用于样本容量n≤50时,检验样本是否符合正态分布。
R中,函数shapiro.test()提供了W统计量和相应P值,所以可以直接使用P值作为判断标准,其调用格式为shapiro.test(x),参数x即所要检验的数据集,它是长度在35000之间的向量。
例:
某银行规定VIP客户的月均账户余额要达到100万元,并以此作为比较各分行业绩的一项指标。这里分行即因子,账户余额是所要检验的指标,先从三个分行中,分别随机抽取7个VIP客户的账户。为了用单因素方差分析判断三个分行此项业绩指标是否相同,首先对二个分行的账户余额分别进行正态检验。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
P值均大于显著性水平a=0.05,因此不能拒绝原假设,说明数据在因子A的三个水平下都
是来自正态分布的。
(2)方差齐性检验
方差分析的另一个假设:方差齐性,需要检验不同水平卜的数据方差是否相等。R中最常用的Bartlett检验,bartlett.test()调用格式为
bartlett.test(x,g…)
其中,参数X是数据向量或列表(list) ; g是因子向量,如果X是列表则忽略g.当使用数据集时,也通过formula调用函数:
bartlett.test(formala, data, subset,na.action…)
formula是形如lhs一rhs的方差分析公式;data指明数据集:subset是可选项,可以用来指定观测值的一个子集用于分析:na.action表示遇到缺失值时应当采取的行为。
续上例:
1 2 3 4 5 6 7 8 |
|
由于P值远远大于显著性水平a=0.05,因此不能拒绝原假设,我们认为不同水平下的数据是等方差的。
8.1.2单因素方差分析
R中的函数aov()用于方差分析的计算,其调用格式为:
aov(formula, data = NULL, projections =FALSE, qr = TRUE,contrasts = NULL, ...)
其中的参数formula表示方差分析的公式,在单因素方差分析中即为x