golang并发官方示例

本文详细解析了Go语言并发编程的关键概念,包括Goroutines、Channels、Buffered Channels、Range和Close、Select以及sync.Mutex。通过示例介绍了如何启动Goroutines、使用无缓冲和缓冲Channels进行同步,以及如何处理死锁和使用Mutex确保数据安全。同时,给出了Web Crawler的并发实现练习,提示利用map和并发安全策略避免重复抓取URL。


官方网站

Goroutines

A goroutine is a lightweight thread managed by the Go runtime.

go f(x, y, z)
starts a new goroutine running

f(x, y, z)
The evaluation of f, x, y, and z happens in the current goroutine and the execution of f happens in the new goroutine.

Goroutines run in the same address space, so access to shared memory must be synchronized. The sync package provides useful primitives, although you won’t need them much in Go as there are other primitives. (See the next slide.)

package main

import (
	"fmt"
	"time"
)

func say(s string) {
	for i := 0; i < 5; i++ {
		time.Sleep(100 * time.Millisecond)
		fmt.Println(s)
	}
}

func main() {
	go say("world")
	say("hello")
}

Channels

Channels are a typed conduit(管道) through which you can send and receive values with the channel operator, <-.

ch <- v // Send v to channel ch.
v := <-ch // Receive from ch, and
// assign value to v.
(The data flows in the direction of the arrow.)

Like maps and slices, channels must be created before use:

ch := make(chan int)
By default, sends and receives block until the other side is ready. This allows goroutines to synchronize without explicit locks or condition variables.

The example code sums the numbers in a slice, distributing the work between two goroutines. Once both goroutines have completed their computation, it calculates the final result.

package main

import "fmt"

func sum(s []int, c chan int) {
	sum := 0
	for _, v := range s {
		sum += v
	}
	c <- sum // send sum to c
}

func main() {
	s := []int{7, 2, 8, -9, 4, 0}

	c := make(chan int)
	go sum(s[:len(s)/2], c)
	go sum(s[len(s)/2:], c)
	x, y := <-c, <-c // receive from c

	fmt.Println(x, y, x+y)
}

Buffered Channels

Channels can be buffered. Provide the buffer length as the second argument to make to initialize a buffered channel:

ch := make(chan int, 100)
Sends to a buffered channel block only when the buffer is full. Receives block when the buffer is empty.

Modify the example to overfill the buffer and see what happens.

package main

import "fmt"

func main() {
	ch := make(chan int, 2)
	ch <- 1
	ch <- 2
	fmt.Println(<-ch)
	fmt.Println(<-ch)
}

Range and Close

A sender can close a channel to indicate that no more values will be sent. Receivers can test whether a channel has been closed by assigning a second parameter to the receive expression: after

v, ok := <-ch
ok is false if there are no more values to receive and the channel is closed.

The loop for i := range c receives values from the channel repeatedly until it is closed.

Note: Only the sender should close a channel, never the receiver. Sending on a closed channel will cause a panic.

Another note: Channels aren’t like files; you don’t usually need to close them. Closing is only necessary when the receiver must be told there are no more values coming, such as to terminate a range loop.

package main

import (
	"fmt"
)

func fibonacci(n int, c chan int) {
	x, y := 0, 1
	for i := 0; i < n; i++ {
		c <- x
		x, y = y, x+y
	}
	close(c)
}

func main() {
	c := make(chan int, 10)
	go fibonacci(cap(c), c)
	for i := range c {
		fmt.Println(i)
	}
}

Select

The select statement lets a goroutine wait on multiple communication operations.

A select blocks until one of its cases can run, then it executes that case. It chooses one at random if multiple are ready.

package main

import "fmt"

func fibonacci(c, quit chan int) {
	x, y := 0, 1
	for {
		select {
		case c <- x:
			x, y = y, x+y
		case <-quit:
			fmt.Println("quit")
			return
		}
	}
}

func main() {
	c := make(chan int)
	quit := make(chan int)
	go func() {
		for i := 0; i < 10; i++ {
			fmt.Println(<-c)
		}
		quit <- 0
	}()
	fibonacci(c, quit)
}

fatal error: all goroutines are asleep - deadlock!

[kou@python 2lessson]$ !g
go run select.go 
0
1
1
2
3
5
8
13
21
34
quit

package main

import "fmt"

func fibonacci(c, quit chan int) {
	x, y := 0, 1
	for {
		select {
		case c <- x:
			x, y = y, x+y
		case <-quit:
			fmt.Println("quit")
			return
		}
	}
}

func main() {
	c := make(chan int)
	quit := make(chan int)
	// go func() {
		for i := 0; i < 10; i++ {
			fmt.Println(<-c)
		}
		quit <- 0
	// }()
	fibonacci(c, quit)
}

注释掉go func()来理解go func的功能。
fatal error: all goroutines are asleep - deadlock!
死锁:首先我们这里通过make(chan int),开辟的通道是一种无缓冲通道,当对这个缓冲通道写的时候,会一直阻塞等到某个协程对这个缓冲通道读
main函数的执行在go语言中就是一个协程,所以在执行到fmt.Println(<-c),执行main函数的协程将被阻塞,换句话说main函数被阻塞了,后面的就执行不到了!

Default Selection

The default case in a select is run if no other case is ready.

Use a default case to try a send or receive without blocking:

select {
case i := <-c:
// use i
default:
// receiving from c would block
}

package main

import (
	"fmt"
	"time"
)

func main() {
	tick := time.Tick(100 * time.Millisecond)
	boom := time.After(500 * time.Millisecond)
	for {
		select {
		case <-tick:
			fmt.Println("tick.")
		case <-boom:
			fmt.Println("BOOM!")
			return
		default:
			fmt.Println("    .")
			time.Sleep(50 * time.Millisecond)
		}
	}
}

sync.Mutex

We’ve seen how channels are great for communication among goroutines.

But what if we don’t need communication? What if we just want to make sure only one goroutine can access a variable at a time to avoid conflicts?

This concept is called mutual exclusion, and the conventional name for the data structure that provides it is mutex.

Go’s standard library provides mutual exclusion with sync.Mutex and its two methods:

Lock
Unlock
We can define a block of code to be executed in mutual exclusion by surrounding it with a call to Lock and Unlock as shown on the Inc method.

We can also use defer to ensure the mutex will be unlocked as in the Value method.

package main

import (
	"fmt"
	"sync"
	"time"
)

// SafeCounter is safe to use concurrently.
type SafeCounter struct {
	v   map[string]int
	mux sync.Mutex
}

// Inc increments the counter for the given key.
func (c *SafeCounter) Inc(key string) {
	c.mux.Lock()
	// Lock so only one goroutine at a time can access the map c.v.
	c.v[key]++
	c.mux.Unlock()
}

// Value returns the current value of the counter for the given key.
func (c *SafeCounter) Value(key string) int {
	c.mux.Lock()
	// Lock so only one goroutine at a time can access the map c.v.
	defer c.mux.Unlock()
	return c.v[key]
}

func main() {
	c := SafeCounter{v: make(map[string]int)}
	for i := 0; i < 1000; i++ {
		go c.Inc("somekey")
	}

	time.Sleep(time.Second)
	fmt.Println(c.Value("somekey"))
}

// answer:1000

Exercise: Web Crawler

In this exercise you’ll use Go’s concurrency features to parallelize a web crawler.

Modify the Crawl function to fetch URLs in parallel without fetching the same URL twice.

Hint: you can keep a cache of the URLs that have been fetched on a map, but maps alone are not safe for concurrent use!

package main

import (
	"fmt"
)

type Fetcher interface {
	// Fetch returns the body of URL and
	// a slice of URLs found on that page.
	Fetch(url string) (body string, urls []string, err error)
}

// Crawl uses fetcher to recursively crawl
// pages starting with url, to a maximum of depth.
func Crawl(url string, depth int, fetcher Fetcher) {
	// TODO: Fetch URLs in parallel.
	// TODO: Don't fetch the same URL twice.
	// This implementation doesn't do either:
	if depth <= 0 {
		return
	}
	body, urls, err := fetcher.Fetch(url)
	if err != nil {
		fmt.Println(err)
		return
	}
	fmt.Printf("found: %s %q\n", url, body)
	for _, u := range urls {
		Crawl(u, depth-1, fetcher)
	}
	return
}

func main() {
	Crawl("https://golang.org/", 4, fetcher)
}

// fakeFetcher is Fetcher that returns canned results.
type fakeFetcher map[string]*fakeResult

type fakeResult struct {
	body string
	urls []string
}

func (f fakeFetcher) Fetch(url string) (string, []string, error) {
	if res, ok := f[url]; ok {
		return res.body, res.urls, nil
	}
	return "", nil, fmt.Errorf("not found: %s", url)
}

// fetcher is a populated fakeFetcher.
var fetcher = fakeFetcher{
	"https://golang.org/": &fakeResult{
		"The Go Programming Language",
		[]string{
			"https://golang.org/pkg/",
			"https://golang.org/cmd/",
		},
	},
	"https://golang.org/pkg/": &fakeResult{
		"Packages",
		[]string{
			"https://golang.org/",
			"https://golang.org/cmd/",
			"https://golang.org/pkg/fmt/",
			"https://golang.org/pkg/os/",
		},
	},
	"https://golang.org/pkg/fmt/": &fakeResult{
		"Package fmt",
		[]string{
			"https://golang.org/",
			"https://golang.org/pkg/",
		},
	},
	"https://golang.org/pkg/os/": &fakeResult{
		"Package os",
		[]string{
			"https://golang.org/",
			"https://golang.org/pkg/",
		},
	},
}

这个例子是6.824最初的版本。先读懂这个再去看crawler.go

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值