Leetcode:464. Can I Win

Description

In the “100 game,” two players take turns adding, to a running total, any integer from 1..10. The player who first causes the running total to reach or exceed 100 wins.

What if we change the game so that players cannot re-use integers?

For example, two players might take turns drawing from a common pool of numbers of 1..15 without replacement until they reach a total >= 100.

Given an integer maxChoosableInteger and another integer desiredTotal, determine if the first player to move can force a win, assuming both players play optimally.

You can always assume that maxChoosableInteger will not be larger than 20 and desiredTotal will not be larger than 300.

Example
Input:
maxChoosableInteger = 10
desiredTotal = 11
Output:
false
Explanation:
No matter which integer the first player choose, the first player will lose.
The first player can choose an integer from 1 up to 10.
If the first player choose 1, the second player can only choose integers from 2 up to 10.
The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal.
Same with other integers chosen by the first player, the second player will always win.

解题思路

题意是1-M的数中各轮流抽一个数,两个人抽的数的总和为T或者谁的数加上超过100的为winner。
令M = maxChoosableInteger , T = desiredTotal.
0 : not calculated yet;
1 : current player can win;
-1: current player can’t win.
There are several checks to be done at initial state k = 0 for early termination so we won’t waste our time for DFS process:

  1. if T < 2, obviously, the first player wins by simply picking 1.
  2. if the sum of entire pool S = M*(M+1)/2 is less than T, of course, nobody can reach T.
  3. if the sum S == T, the order to pick numbers from the pool is irrelevant. Whoever picks the last will reach T. So the first player can win iff M is odd.(M为奇数时才能赢)
class Solution {
public:

    bool canIWin(int M, int T) {
      int S = M*(M+1)/2; // sum of entire pool
      return T<2? true : S<T? false : S==T? M%2 : dfs(M,T,0);
    }

    bool dfs(int M, int T, int k) {
      if (T<=0 || m[k]) return T>0 && m[k]>0; // memorization or total reached by opponent
      for (int i = 0; i < M; ++i)
        if (!(k&1<<i) && !dfs(M, T-i-1, k|1<<i)) return m[k] = 1; // current player wins
      return !(m[k] = -1); // current player can't win
    }

    int m[1<<20] = {}; // m[key]: memorized result when pool state = key
};

或者

class Solution {
public:
  bool canIWin(int maxChoosableInteger, int desiredTotal) {
    if (maxChoosableInteger >= desiredTotal) return true;
    int sum = ((maxChoosableInteger + 1) * maxChoosableInteger) >> 1;
    if (sum < desiredTotal) return false;
    mp = vector<int>(1 << maxChoosableInteger, -1);
    return canWin(0, maxChoosableInteger, desiredTotal);
  }
private:
  vector<int> mp;
  bool canWin(int used, const int &maxChoosableInteger, int desiredTotal) {
    if (mp[used] != -1) return mp[used];
    for (int i = maxChoosableInteger, bits = 1 << (maxChoosableInteger - 1); i >= 1; --i, bits >>= 1) {
      if ((used & bits) != 0) continue;
      if (i >= desiredTotal || !canWin(used | bits, maxChoosableInteger, desiredTotal - i)) {
        mp[used] = 1;
        return true;
      }
    }
    mp[used] = 0;
    return false;
  }
};
六、状压DP的优化技巧 6.1 预处理合法状态 很多问题中,大部分状态是不合法的,可以预先筛选: cpp vector valid_states; for (int state = 0; state < (1 << n); ++state) { if (check(state)) { // 检查state是否合法 valid_states.push_back(state); } } 6.2 滚动数组优化 当状态只依赖前一个阶段时,可以节省空间: cpp vector<vector> dp(2, vector(size)); // 只保留当前和上一个状态 int now = 0, prev = 1; for (int i = 1; i <= n; ++i) { swap(now, prev); for (auto& state : valid_states) { dp[now][state] = 0; // 清空当前状态 // 状态转移… } } 6.3 记忆化搜索实现 有时递归形式更直观: cpp int memo[1<<20][20]; // 记忆化数组 int dfs(int state, int u) { if (memo[state][u] != -1) return memo[state][u]; // 递归处理… return memo[state][u] = res; } 七、常见问题与调试技巧 7.1 常见错误 位运算优先级:总是加括号,如(state & (1 << i)) 数组越界:状态数是2ⁿ,不是n 初始状态设置错误:比如TSP中dp[1][0] = 0 边界条件处理不当:如全选状态是(1<<n)-1,不是1<<n 7.2 调试建议 打印中间状态:将二进制状态转换为可视化的形式 cpp void printState(int state, int n) { for (int i = n-1; i >= 0; --i) cout << ((state >> i) & 1); cout << endl; } 从小规模测试用例开始(如n=3,4) 使用assert检查关键假设 八、学习路线建议 初级阶段: 练习基本位操作 解决简单状压问题(如LeetCode 464、526题) 中级阶段: 掌握经典模型(TSP、棋盘覆盖) 学习优化技巧(预处理、滚动数组) 高级阶段: 处理高维状压(如需要同时压缩多个状态) 结合其他算法(如BFS、双指针) 九、实战练习题目推荐 入门题: LeetCode 78. Subsets(理解状态表示) LeetCode 464. Can I Win(简单状压DP) 中等题: LeetCode 526. Beautiful Arrangement LeetCode 691. Stickers to Spell Word 经典题: POJ 2411. Mondriaan’s Dream(棋盘覆盖) HDU 3001. Travelling(三进制状压) 挑战题: Codeforces 8C. Looking for Order Topcoder SRM 556 Div1 1000. LeftRightDigitsGame2 记住,掌握状压DP的关键在于: 彻底理解二进制状态表示 熟练运用位运算 通过大量练习培养直觉 希望这份超详细的教程能帮助你彻底掌握状压DP!如果还有任何不明白的地方,可以针对具体问题继续深入探讨。 请帮我转成markdown语法输出,谢谢
最新发布
08-13
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值