18-attr和prop方法的练习

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>18-attr和prop方法的练习</title>
    <script type="text/javascript" src ="https://code.jquery.com/jquery-1.12.4.js"></script>
    <script>
        $(function () {
            //1.给按钮添加点击事件
          var btn = document.getElementsByTagName("button")[0];
          btn.onclick = function () {
            var input = document.getElementsByTagName("input")[0];
            //2.获取输入框的内容
            var text = input.value;
            //3.修改img 的src属性节点的值
            $("img").attr("src",text);
            //$("img").prop("src",text);
          }
          });
    </script>
</head>
<body>
<input type="text">
<button>切换图片</button>
<img src="https://www.baidu.com/img/bd_logo1.png?where=super" alt="">
</body>
</html>

 

import networkx as nx from neo4j import GraphDatabase from torch_geometric.data import Data # Connect to Neo4j database driver = GraphDatabase.driver(uri, auth=(username, password)) # Define a Cypher query to retrieve nodes and relationships from Neo4j query = """ MATCH (n)-[r]->(m) RETURN id(n) AS source, id(m) AS target, type(r) AS edge_type, labels(n) AS source_labels, labels(m) AS target_labels, properties(n) AS source_props, properties(m) AS target_props """ # Execute the query and retrieve the results with driver.session() as session: results = session.run(query) # Convert the query results to a NetworkX graph graph = nx.MultiDiGraph() for record in results: graph.add_edge(record['source'], record['target'], key=record['edge_type'], source_labels=record['source_labels'], target_labels=record['target_labels'], source_props=record['source_props'], target_props=record['target_props']) # Convert the NetworkX graph to a PyTorch Geometric Data object x = [] edge_index = [] edge_attr = [] for node in graph.nodes(): node_attrs = [] for label in graph.nodes[node]['labels']: node_attrs.append(label) for prop in graph.nodes[node]['source_props']: node_attrs.append(prop) x.append(node_attrs) for source, target, data in graph.edges(keys=True, data=True): edge_index.append([source, target]) edge_attrs = [] for label in data['source_labels']: edge_attrs.append(label) for prop in data['properties']: edge_attrs.append(prop) edge_attr.append(edge_attrs) data = Data(x=torch.tensor(x), edge_index=torch.tensor(edge_index).t().contiguous(), edge_attr=torch.tensor(edge_attr))详细注释
06-06
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值