基于Qwen2.5-Coder 快速搭建应用管理系统

序言

在过去的一段时间里,通义千问团队基于Qwen2 语言模型获得的更多语言模型反馈,专注于创建更智能、更博学的语言模型,最新发布包括了语言模型 Qwen2.5,以及专门针对编程的 Qwen2.5-Coder 和数学的 Qwen2.5-Math 模型。所有开放权重的模型都是稠密的、decoder-only的语言模型,提供多种不同规模的版本,包括:
• Qwen2.5: 0.5B, 1.5B, 3B, 7B, 14B, 32B, 以及72B;
• Qwen2.5-Coder: 1.5B, 7B, 以及即将推出的32B;
• Qwen2.5-Math: 1.5B, 7B, 以及72B。
在这里插入图片描述
除了3B和72B的版本外,Qwen2.5所有的开源模型都采用了 Apache 2.0 许可证。您可以在相应的模型仓库中找到许可证文件。此外,本次通义千问团队还开源了性能不输于GPT-4o的 Qwen2-VL-72B。
官方对于Qwen2.5系列本次开源内容,给出了详细的内容阐述,包括:
• 更大的训练数据集:Qwen2.5 语言模型的所有尺寸都在最新的大规模数据集上进行了预训练,该数据集包含多达 18T tokens。相较于 Qwen2,Qwen2.5 获得了显著更多的知识(MMLU:85+),并在编程能力(HumanEval 85+)和数学能力(MATH 80+)方面有了大幅提升。
• 更强的指令遵循能力:新模型在指令执行、生成长文本(超过 8K 标记)、理解结构化数据(例如表格)以及生成结构化输出特别是 JSON 方面取得了显著改进。Qwen2.5 模型总体上对各种system prompt更具适应性,增强了角色扮演实现和聊天机器人的条件设置功能。
• 长文本支持能力:与 Qwen2 类似,Qwen2.5 语言模型支持高达 128K tokens,并能生成最多 8K tokens的内容。
• 强大的多语言能力:它们同样保持了对包括中文、英文、法文、西班牙文、葡萄牙文、德文、意大利文、俄文、日文、韩文、越南文、泰文、阿拉伯文等 29 种以上语言的支持。
• 专业领域的专家语言模型能力增强,即用于编程的 Qwen2.5-Coder 和用于数学的 Qwen2.5-Math,相比其前身 CodeQwen1.5 和 Qwen2-Math 有了实质性的改进。具体来说,Qwen2.5-Coder 在包含 5.5 T tokens 编程相关数据上进行了训练,使即使较小的编程专用模型也能在编程评估基准测试中表现出媲美大型语言模型的竞争力。同时,Qwen2.5-Math 支持 中文 和 英文,并整合了多种推理方法,包括CoT(Chain of Thought)、PoT(Program of Thought)和 TIR(Tool-Integrated Reasoning)。
本文主要是基于Qwen2.5-Coder 快速搭建应用管理系统,那么下面先来了解一下什么是 Qwen2.5-Coder。

Qwen2.5-Coder

自从推出 CodeQwen1.5 以来,通义千问吸引了大量依赖该模型完成各种编程任务的用户,这些任务包括调试、回答编程相关的问题以及提供代码建议。Qwen2.5-Coder 特别为编程应用而设计。在本节展示了 Qwen2.5-Coder-7B-Instruct 的性能结果,并将其与领先的开源模型进行了基准测试,其中包括那些参数量大得多的模型。
Qwen2.5-Coder 是您个人编程助手的优秀选择。尽管它的体积较小,但在多种编程语言和任务中,它的表现超过了众多大型语言模型,展现了其卓越的编程能力。
在这里插入图片描述
如何基于 Qwen2.5-Coder 快速搭建应用管理系统,下面开始详细讲解。

快速搭建应用管理系统

在快速搭建应用管理系统之前,我们先要进入到魔塔社区,通义千问Qwen开源模型库地址:https://www.modelscope.cn/organization/Qwen,点击链接地址进入ModelScope 通义千问Qwen 模型详情页
在这里插入图片描述
我们今天主要需要使用的通义千问Qwen开源模型 为 Qwen2.5-Coder,点击Qwen2.5-Coder 模型合集进入Qwen2.5-Coder 模型合集详情页,
在这里插入图片描述
这里我们选择 通义千问2.5-代码-demo 点击模型tab进入模型详情页,在模型详情页输入我们的需求【基于springboot生成一个项目代码包】

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
### Qwen2.5-CoderQwen2.5 的特性差异 #### 特性对比概述 Qwen2.5-Coder 是专门为编码任务优化的大规模预训练模型,而 Qwen2.5 则是一个更广泛用途的语言模型。两者的主要区别在于应用场景和技术实现上的不同。 #### 应用场景 - **Qwen2.5-Coder** 主要针对编程和软件开发领域设计,在代码补全、错误检测以及自动化测试等方面表现出色[^2]。 - **Qwen2.5** 更侧重于自然语言处理的一般应用,如对话生成、文本摘要等通用NLP任务。 #### 技术细节 - **查询类型** - 对于 **Qwen2.5-Coder**, 解码器的查询可以分为潜在查询和文本查询两类。前者适用于解决复杂的逻辑推理问题,后者则专注于理解并生成人类可读的程序文档说明[^1]。 - 而对于 **Qwen2.5**, 查询机制更加灵活多样,不仅限于上述两种形式,还包括但不限于图像描述中的视觉特征提取等多模态输入方式。 - **输出模式** - 在 **Qwen2.5-Coder** 中, 输出主要集中在提供精确的语法结构指导和支持高效的编译过程所需的语义嵌入上。 - 相较之下,**Qwen2.5** 可以产生更为丰富的输出种类,比如像素级别的掩膜预测用于目标分割或是其他计算机视觉相关的子任务。 ```python # 示例:使用Qwen2.5-Coder进行代码补全 def example_function(x): return x * # 使用Qwen2.5进行文本摘要 text = "这是一个很长的文章..." summary = model.summarize(text) print(summary) ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

csdn565973850

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值