Oracle 10g RAC的相关概念

Oracle的Clusterware和管理组件
Oracle Clusterware is designed for, and tightly integrated with, Oracle RAC.
When you create an Oracle RAC database using any of the management tools, the database is registered with and managed by Oracle Clusterware, along with the other Oracle processes such as Virtual Internet Protocol (VIP) address, Global Services Daemon (GSD), the Oracle Notification Service (ONS), and the Oracle Net listeners. These resources are automatically started when Oracle Clusterware starts the node and automatically restarted if they fail. The Oracle Clusterware daemons run on each node.

Oracle ClusterWare的进程组件
Cluster Synchronization Services (CSS)--Manages the cluster configuration by controlling which nodes are members of the cluster and by notifying members when a node joins or leaves the cluster. If you are using third-party clusterware, then the css process interfaces with your clusterware to manage node membership information.

Cluster Ready Services (CRS)--The primary program for managing high availability operations within a cluster. Anything that the crs process manages is known as a cluster resource which could be a database, an instance, a service, a Listener, a virtual IP (VIP) address, an application process, and so on. The crs process manages cluster resources based on the resource's configuration information that is stored in the OCR. This includes start, stop, monitor and failover operations. The crs process generates events when a resource status changes. When you have installed Oracle RAC, crs monitors the Oracle instance, Listener, and so on, and automatically restarts these components when a failure occurs. By default, the crs process makes five attempts to restart a resource and then does not make further restart attempts if the resource does not restart.

Event Management (EVM)--A background process that publishes events that crs creates.

Oracle Notification Service (ONS)--A publish and subscribe service for communicating Fast Application Notification (FAN) events.

RACG--Extends clusterware to support Oracle-specific requirements and complex resources. Runs server callout scripts when FAN events occur.


Process Monitor Daemon (OPROCD)--This process is locked in memory to monitor the cluster and provide I/O fencing. OPROCD performs its check, stops running, and if the wake up is beyond the expected time, then OPROCD resets the processor and reboots the node. An OPROCD failure results in Oracle Clusterware restarting the node. OPROCD uses the hangcheck timer on Linux platforms.

Unix系统Oracle Clusterware的后台进程:
crsd--Performs high availability recovery and management operations such as maintaining the OCR and managing application resources. This process runs as the root user, or by a user in the admin group on Mac OS X-based systems. This process restarts automatically upon failure.

evmd--Event manager daemon. This process also starts the racgevt process to manage FAN server callouts.

ocssd--Manages cluster node membership and runs as the oracle user; failure of this process results in cluster restart.

oprocd--Process monitor for the cluster. Note that this process only appears on platforms that do not use vendor clusterware with Oracle Clusterware.

Oracle RAC的Cache Fusion技术:
Oracle RAC databases have two or more database instances that each contain memory structures and background processes.
Each instance has a buffer cache in its System Global Area (SGA). Using Cache Fusion, Oracle RAC environments logically combine each instance's buffer cache to enable the instances to process data as if the data resided on a logically combined, single cache.

The SGA size requirements for Oracle RAC are greater than the SGA requirements for single-instance Oracle databases due to Cache Fusion.

GCS和GES服务与GRD的作用:
To ensure that each Oracle RAC database instance obtains the block that it needs to satisfy a query or transaction, Oracle RAC instances use two processes, the Global Cache Service (GCS) and the Global Enqueue Service (GES). The GCS and GES maintain records of the statuses of each data file and each cached block using a Global Resource Directory (GRD). The GRD contents are distributed across all of the active instances, which effectively increases the size of the SGA for an Oracle RAC instance.

Cache Fusion的实现:
After one instance caches data, any other instance within the same cluster database can acquire a block image from another instance in the same database faster than by reading the block from disk. Therefore, Cache Fusion moves current blocks between instances rather than re-reading the blocks from disk. When a consistent block is needed or a changed block is required on another instance, Cache Fusion transfers the block image directly between the affected instances. Oracle RAC uses the private interconnect for interinstance communication and block transfers. The GES Monitor and the Instance Enqueue Process manages access to Cache Fusion resources and enqueue recovery processing.

RAC实现的几个后台进程:
The Oracle RAC processes and their identifiers are as follows:
LMS--Global Cache Service Process
LMD--Global Enqueue Service Daemon
LMON--Global Enqueue Service Monitor
LCK0--Instance Enqueue Process

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/13558130/viewspace-625630/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/13558130/viewspace-625630/

本项目采用C++编程语言结合ROS框架构建了完整的双机械臂控制系统,实现了Gazebo仿真环境下的协同运动模拟,并完成了两台实体UR10工业机器人的联动控制。该毕业设计在答辩环节获得98分的优异成绩,所有程序代码均通过系统性调试验证,保证可直接部署运行。 系统架构包含三个核心模块:基于ROS通信架构的双臂协调控制器、Gazebo物理引擎下的动力学仿真环境、以及真实UR10机器人的硬件接口层。在仿真验证阶段,开发了双臂碰撞检测算法和轨迹规划模块,通过ROS控制包实现了末端执行器的同步轨迹跟踪。硬件集成方面,建立了基于TCP/IP协议的实时通信链路,解决了双机数据同步和运动指令分发等关键技术问题。 本资源适用于自动化、机械电子、人工智能等专业方向的课程实践,可作为高年级课程设计、毕业课题的重要参考案例。系统采用模块化设计理念,控制核心与硬件接口分离架构便于功能扩展,具备工程实践能力的学习者可在现有框架基础上进行二次开发,例如集成视觉感知模块或优化运动规划算法。 项目文档详细记录了环境配置流程、参数调试方法和实验验证数据,特别说明了双机协同作业时的时序同步解决方案。所有功能模块均提供完整的API接口说明,便于使用者快速理解系统架构并进行定制化修改。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值