密码学系列之:生日攻击

生日问题也叫做生日悖论,它是这样这样描述的。

假如随机选择n个人,那么这个n个人中有两个人的生日相同的概率是多少。如果要想概率是100%,那么只需要选择367个人就够了。因为只有366个生日日期(包括2月29日)。

如果想要概率达到99.9% ,那么只需要70个人就够了。50%的概率只需要23个人。

对于现在的幼儿园小朋友来说,一个班上差不多有30人,那么将会有大于50%的几率,班上有两个人的生日是一样的。优品拍拍 

听起来是不是很神奇?跟我们第一映像中的基数是不是要少很多。

我们看一张概率图:

在实际应用中,可以应用生日问题中的概率模型,从而减少碰撞攻击的复杂度,或者来评估一个hash函数中可能出现碰撞攻击的几率。

怎么计算呢?

假如P(A) 是生日相同的概率,那么P(A) = 1 – P(A’) ,其中P(A’)是生日不同的概率。

一个人生日不同的概率是365/365,两个人生日不同的概率就是365/365 * 364/365 ,依次类推。

我们可以得到23个人生日不同的概率大概就是 0.492703。

也就是说23个人中有两个人生日相同的概率可以大于50%。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值