DTS406TC Natur al Language Processing Coursework 1Python

Java Python 

Module code and Title

DTS406TC Natural Language Processing

School Title

School of Artificial Intelligence and Advanced Computing

Assignment Title

Coursework 1 (CW 1)

Submission Deadline

5 pm China time (UTC+8 Beijing) on March23,2025

Final Word Count

3000

If you  agree to  let the university use your work  anonymously  for teaching  and learning purposes, please type “yes” here.

Policy

The report should be submitted in PDF format. The word count limit of the report is 3,000. All code must be written  in  Python.  It  should  be well-structured,  easy  to  read,  and  thoroughly documented. Each function should include comments explaining its purpose and functionality. Ensure that the code runs without errors. All required files should be included in a single zip file. A README  file is needed to explain how to run the  code and list any dependencies. The document must be submitted through Learning Mall Online to the appropriate drop box.

DTS406TC Natural Language Processing

Coursework 1 (Group Assessment)

Due: 5:00 pm China time (UTC+8 Beijing) on March23,2025

Weight: 40%

Maximum score: 100 marks (80 %  group marks + 20 %  individual marks)

Groupings: Each  group  consists  of 2-3  students.  You  are  free  to  select  your  own team members. Students who do not make a selection will be randomly assigned to a team . Once the teams are confirmed , no changes will be permitted.

Assessed learning outcomes:

A Systematically comprehend the theoretical foundations ofNatural Language Processing B Apply statistical  and   machine  learning techniques to process   and   analyze  natural language data

Overview

Sentiment Analysis is the process of determining whether textual content expresses a positive, neutral, or negative sentiment. With the vast amount of textual data (e.g., tweets, Reddit posts, reviews) generated daily, Sentiment Analysis can automatically identify users' attitudes from User-Generated  Content  (UGC),  assisting  companies  or  organizations  in  making  informed decisions.

1. Literature Review on Sentiment Analysis (20 Marks,  Individual Work)

a)    Overview of the sentiment analysis and its applications. Please provide three examples of real-life applications of sentiment analysis. (6 Marks)

b)   Please list three key challenges in sentiment analysis. (6 Marks)

c)    Please elaborate on two traditional methods (e.g., Naive Bayes, SVM) and two deep learning approaches (e.g., BERT, GPT) on the sentiment analysis. Meanwhile, discuss the advantages and disadvantages of each approach.  (8 Marks)

d) Each   team   member    should   individually   complete the   literature   review   on sentiment analysis. This section will be scored individually.

2. Data Collection (12 Marks, Group Work )

Collect two datasets of User-Generated Content (UGC) from platforms like Twitter, Reddit, or Weibo,  focusing on  sentiment  analysis  in  different  scenarios.  Each  dataset  should  contain  a minimum of 3,000 instances. Preprocess the datasets by performing tasks like stopword removal and tokenization. Finally, a statistical analysis of the two datasets should be conducted (e.g., the word distribution of the corpus). Notice that some UGC data may be downloaded from Kaggle if there are API restrictions preventing direct downloads from social platforms. (6 Marks/dataset x 2=12 Marks)

3. Algorithm Description & Implementation  (48 Marks, Group Work)

a)    Choose four approaches for the sentiment analysis task on the collected UGC datasets: two using traditional methods and two employing deep learning methods.   All  four approaches should be applied to each of the UGC datasets. Please provide the pseudo- code and briefly provide  the  comments for each function of the pseudo-code.  (5 Marks/algorithm x 4= 20 Marks)

b)   Develop a sentiment analysis system for each approach using Python. The implementation pipeline should include the following components: feature engineering (3  Marks,  e.g.,  converting  textual  data  to embedding space regarding to different approaches), algorithm implementation (3 Marks, with fine-tuning required for the deep learning approach), and metrics computation (1 mark). 7 Marks/algorithm x 4 = 28 Marks)

4. Results Analysis (13 Marks, Group Work)

a)    Provide the sentiment analysis results for each approach applied to the two UGC datasets. Select and apply three relevant metrics (e.g., precision, recall, and F 1 score) to assess the performance of the implemented models, with each metric worth 3 Marks. (9 Marks)

b)   Explain the reasons behind the model performance for each approach.    (1 Mark/algorithm x 4 = 4 Marks)

5. Report Writing (7 Marks, Group Work)

This coursework evaluates your understanding the challenges of the problem and the correctness of  the proposed algorithms. It also tests your professional skills in terminology  usage, presentation  of algorithms and experimental results, as well as the logical manner of the proposal. (7 Marks)

Submission

One of the team members must submit a single zip file. The zip file is named "TeamID_Coursework.zip". It includes:  a cover letter with the group member information and the final PDF reports. The final PDF reports includes the individual reports of literature review on the sentiment analysis and the group report. A folder labeled "algorithms" contains all the model  implementations,  data  preprocessing  scripts,  and  evaluation  scripts.  A  folder  labeled "data" contains all the datasets and the experimental results in the CSV format         

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值