HOMEWORK 4 NANO203R

Java Python HOMEWORK 4, NANO203

DUE March 14,  5  pm

1.   (20  points) You are working on alloyed plasmonic nanoparticles, focusing on making smaller nanoparticles to increase the total  surface area for increased sensitivity and activity in sensing and catalysis, respectively.

a.   Identify and describe a characterization approach (technique and expected contrast/analysis  mechanism) to assess the composition and structure of colloidal Cu-Au alloy nanoparticles (<30 nm) using an electron microscopy approach.

b.   What signal might you use to study the dielectric response of the Cu-Au nanoparticles for application in alloy plasmonics using a TEM?

2.           (30 points) Index the first 4 Bragg reflections (hkl) for the Au foil (a = 4.08 Å) diffraction shown below and calculate the camera length of the microscope at 200 kV. Perform the analyses on the printout copy of the pattern (or make absolutely sure you’re viewing at 100% size on the computer screen).

4.   (50 points) The following is a diffraction pattern of a single crystal of (FCC) copper.

a.   Use the measurement of distances and angles to index the three spots shown in the right half of the pattern using a camera constant of 58.5 Å-mm. Show your work. Correct your indexed peaks to ensure that the angles between them are consistent with the law of cosines.

b.   What is the zone axis of this pattern?

Perform the analyses on a printout copy of the pattern (or be very sure you are viewing the pattern at 100% size on the computer screen).

5.   (50 points) Applying concepts to new techniques:  In the state-of-the-art low-dose&ndai 写HOMEWORK 4, NANO203R bsp;atomic resolution electron microscopy reproduced below from Rothmann et al.

Science 370, eabb5940 (2020) [DOI: 10.1126/science.abb5940], the researchers used the less-common STEM technique known as Low-Angle Annular Dark Field (LAADF) to collect their images of CH(NH2 )2 PbI3.  By referencing the manuscript and using your knowledge of characterization and electron-matter interactions, answer the questions below:

a.   Why is LAADF advantageous for imaging of the organic cation (CH(NH2 )2+, green circle/sphere) relative to HAADF?

b.   Why does Bragg diffraction contribute to the LAADF signal?  Does Bragg diffraction contribute to HAADF? How do the researchers filter data to analyze structure (you’ll need to read into the article a bit)?

c.    Panel D is produced by a Fourier transform. of the real space image in panel A.

i.   What appears in the image in panel D and why?

ii.   Based on D, what is the lattice type of the crystal?

iii.   Based on D, what direction we are viewing the crystal in A?

6.   (50 points) EELS, EDS, and XAS.

a.   Contrast the principal characteristics of EDS and EELS spectra, especially the energies at which we find peaks.

b.   What are the physical mechanisms that generate the signal and how are the results interpreted or quantified?

c.   What advantages does EELS provide over EDS? Why is it particularly well suited for light element analysis?

d.   Can we measure heavier elements, e.g. the 3d transition metals using EELS, and if so how?

e.   How are EELS and XAS similar and how do they differ?

7         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值