1096. Consecutive Factors (20)

本文介绍了一个使用C++编写的程序,该程序能够检测一个数是否为素数,并找出以给定数值为基础的最大长度的素数序列。通过分解输入数字并寻找其素数因子的模式来实现这一目标。
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <cmath>

#include <string>
#include <cstring>
#include <vector>
#include <queue>
#include <map>
#include <set>

using namespace std;

bool isp(int a)
{
    if(a==1)
        return 0;

    for(int i=2;i<=(int)sqrt(a);i++)
    {
        if(a%i==0)
            return 0;
    }
    return 1;
}

int main()
{
   // freopen("in.txt","r" ,stdin);

    long long maxlen=0,first;
    long long N;
    scanf("%lld",&N);
    if(isp(N)==1)
    {
        printf("1\n");
        printf("%lld",N);
        return 0;
    }
    long long sqrtt=(long long)sqrt(N);
    for(int i=2;i<=sqrtt;i++)
    {
      //  头是2 i
        long long t=i;
        long long len=0;
        long long pro=i;
        while(N%pro==0)
        {
            len++;
            if(len>maxlen)
            {
                maxlen=len;
                first=i;
            }

            t++;
            pro=pro*t;
        }
    }

    printf("%lld\n",maxlen);
    for(int i=0;i<maxlen;i++)
    {
        printf("%lld",first+i);
        if(i!=maxlen-1)
            printf("*");
    }

    return 0;
}




源码地址: https://pan.quark.cn/s/a4b39357ea24 欧姆龙触摸屏编程软件MPTST 5.02是专门为欧姆龙品牌的工业触摸屏而研发的编程解决方案,它赋予用户在直观界面上构建、修改以及排错触摸屏应用程序的能力。 该软件在工业自动化领域具有不可替代的地位,特别是在生产线监视、设备操控以及人机互动系统中发挥着核心作用。 欧姆龙MPTST(Machine Process Terminal Software Touch)5.02版本配备了多样化的功能,旨在应对不同种类的触摸屏项目要求。 以下列举了若干核心特性:1. **图形化编程**:MPTST 5.02采用图形化的编程模式,允许用户借助拖拽动作来设计屏幕布局,设定按钮、滑块、指示灯等组件,显著简化了编程流程,并提升了工作效率。 2. **兼容性**:该软件能够适配欧姆龙的多个触摸屏产品线,包括CX-One、NS系列、NJ/NX系列等,使用户可以在同一个平台上完成对不同硬件的编程任务。 3. **数据通信**:MPTST 5.02具备与PLC(可编程逻辑控制器)进行数据交互的能力,通过将触摸屏作为操作界面,实现生产数据的显示与输入,以及设备状态的监控。 4. **报警与事件管理**:软件中集成了报警和事件管理机制,可以设定多种报警标准,一旦达到预设条件,触摸屏便会展示对应的报警提示,助力操作人员迅速做出响应。 5. **模拟测试**:在设备实际连接之前,MPTST 5.02支持用户进行脱机模拟测试,以此验证程序的正确性与稳定性。 6. **项目备份与恢复**:为了防止数据遗失,MPTST 5.02提供了项目文件的备份及还原功能,对于多版本控制与团队协作具有显著价值。 7. **多语言支持**:针对全球化的应...
本资源包为流体力学与化学传质交叉领域的研究提供了一套完整的数值模拟解决方案,重点针对湍流条件下通道内溶解物质的输运与分布规律进行定量分析。该工具集专为高等院校理工科专业的教育与科研需求设计,尤其适合计算机科学、电子工程及数学等相关学科的本科生在完成课程项目、综合设计或学位论文时使用。 软件环境兼容多个版本的MatLAB平台,包括2014a、2019b及后续的2024b发行版,确保了在不同实验室或个人计算环境中的可移植性。资源包内预置了经过验证的示例数据集,用户可直接调用主程序执行计算,显著降低了初始学习成本,使初学者能够迅速掌握基本操作流程。 代码架构采用模块化与参数驱动设计。所有关键物理参数(如流速、扩散系数、边界条件等)均集中于独立的配置模块,用户无需深入底层算法即可灵活调整计算条件,从而高效模拟多种湍流溶解场景。程序逻辑结构清晰,各功能段均配有详尽的说明注释,既阐述了数值方法的理论依据,也解释了关键步骤的实现意图,便于使用者理解模型构建过程并进行针对性修改。 在学术训练方面,本工具能够帮助学生将抽象的流体动力学与传质理论转化为可视化的数值实验结果,深化对湍流混合、浓度边界层等概念的理解。对于毕业设计或专题研究,其参数化框架支持用户嵌入自定义模型,开展创新性数值实验,为深入研究复杂流动中的溶解机制提供可靠的技术支撑。 总体而言,该MATLAB分析工具集通过结构化的代码设计、完备的案例支持与广泛的版本兼容性,为流体溶解现象的数值研究提供了一个高效、可扩展的计算平台,兼具教学示范与科研探索的双重价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
def run_backend(cfg, model, states, keyframes, K): set_global_config(cfg) device = keyframes.device factor_graph = FactorGraph(model, keyframes, K, device) retrieval_database = load_retriever(model) mode = states.get_mode() while mode is not Mode.TERMINATED: mode = states.get_mode() if mode == Mode.INIT or states.is_paused(): time.sleep(0.01) continue if mode == Mode.RELOC: frame = states.get_frame() success = relocalization(frame, keyframes, factor_graph, retrieval_database) if success: states.set_mode(Mode.TRACKING) states.dequeue_reloc() continue idx = -1 with states.lock: if len(states.global_optimizer_tasks) > 0: idx = states.global_optimizer_tasks[0] if idx == -1: time.sleep(0.01) continue # Graph Construction kf_idx = [] # k to previous consecutive keyframes n_consec = 1 for j in range(min(n_consec, idx)): kf_idx.append(idx - 1 - j) frame = keyframes[idx] retrieval_inds = retrieval_database.update( frame, add_after_query=True, k=config["retrieval"]["k"], min_thresh=config["retrieval"]["min_thresh"], ) kf_idx += retrieval_inds lc_inds = set(retrieval_inds) lc_inds.discard(idx - 1) if len(lc_inds) > 0: print("Database retrieval", idx, ": ", lc_inds) kf_idx = set(kf_idx) # Remove duplicates by using set kf_idx.discard(idx) # Remove current kf idx if included kf_idx = list(kf_idx) # convert to list frame_idx = [idx] * len(kf_idx) if kf_idx: factor_graph.add_factors( kf_idx, frame_idx, config["local_opt"]["min_match_frac"] ) with states.lock: states.edges_ii[:] = factor_graph.ii.cpu().tolist() states.edges_jj[:] = factor_graph.jj.cpu().tolist() if config["use_calib"]: factor_graph.solve_GN_calib() else: factor_graph.solve_GN_rays() with states.lock: if len(states.global_optimizer_tasks) > 0: idx = states.global_optimizer_tasks.pop(0)
05-31
<think>嗯,用户想优化和理解run_backend函数中的FactorGraph、retrieval_database和状态管理的代码逻辑。首先,我需要理解这些组件各自的作用。FactorGraph可能用于建模变量之间的关系,比如在优化问题或概率模型中。retrieval_database可能负责数据存储和查询,状态管理可能涉及系统状态的维护和同步。 接下来,我需要考虑如何分析现有代码的结构。可能需要检查FactorGraph的构建过程,看看是否有冗余节点或低效的连接。对于retrieval_database,索引是否合理,缓存机制是否到位。状态管理方面,是否有竞态条件或锁的过度使用导致性能下降。然后,优化方法可能包括重构FactorGraph的初始化步骤,使用更高效的数据结构,比如邻接表代替邻接矩阵。对于数据库,添加索引和缓存常用查询结果。状态管理方面,可以引入状态机或乐观锁来减少阻塞。还要考虑代码的可读性和可维护性,比如添加注释、文档和单元测试。性能分析工具如cProfile可以帮助定位瓶颈。用户可能还需要监控系统运行时的资源使用情况,以便进一步调优。最后,生成相关问题时要覆盖性能分析、具体优化技术、工具使用和实际应用场景,帮助用户全面了解优化方向。</think>### 理解与优化 `run_backend` 函数的代码逻辑 #### 1. **组件功能分析** - **FactorGraph** - **作用**:通常用于建模变量间的依赖关系(如概率图模型或优化问题),例如:$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$[^1] - **优化方向**:检查图的构建是否包含冗余节点,迭代算法(如置信传播)是否可并行化。 - **示例代码片段**: ```python class FactorGraph: def __init__(self): self.variables = {} # 变量节点 self.factors = [] # 因子节点 def add_factor(self, connected_vars): # 检查是否重复连接变量 if not any(f.connected_vars == connected_vars for f in self.factors): self.factors.append(Factor(connected_vars)) ``` - **retrieval_database** - **作用**:存储和检索结构化/非结构化数据(如向量数据库或文档存储)。 - **优化方向**: - 添加索引(如哈希索引或倒排索引)加速查询。 - 使用缓存层(如 Redis)存储高频访问数据。 - **示例**: ```python def query_database(key): # 优先从缓存读取 cache_result = cache.get(key) if cache_result: return cache_result # 无缓存则查询数据库 db_result = database.execute(f"SELECT * FROM data WHERE key={key}") cache.set(key, db_result, ttl=300) return db_result ``` - **状态管理** - **作用**:跟踪系统运行时状态(如任务进度、资源分配)。 - **优化方向**: - 使用状态机明确状态转移逻辑。 - 减少锁的粒度(如从全局锁改为分段锁)。 #### 2. **代码结构优化建议** - **逻辑分层**: ```python def run_backend(): # 1. 初始化层 fg = FactorGraph() db = retrieval_database.connect() # 2. 计算层 results = factor_graph_solver(fg) # 3. 状态同步层 update_state(results, db) ``` - **性能优化技术**: - **向量化计算**:将循环操作替换为矩阵运算(如 NumPy)。 - **异步 I/O**:对数据库查询使用异步模式(如 `asyncpg`)。 #### 3. **调试与监控工具** - **性能分析**: ```bash # 使用 cProfile 分析函数耗时 python -m cProfile -s cumtime run_backend.py ``` - **可视化监控**:通过 Prometheus + Grafana 跟踪内存和 CPU 使用率。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值