cf B. Obsession with Robots 判断最短路?

本文介绍了一个算法挑战:在未知地图的情况下,验证机器人行走路径是否为从起点到终点的最短路径。通过跟踪路径上的每个点来判断是否存在至少一种地图布局使得机器人路径是最优的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Obsession with Robots
time limit per test
2 seconds
memory limit per test
64 megabytes
input
standard input
output
standard output

The whole world got obsessed with robots,and to keep pace with the progress, great Berland's programmer Draude decided to build his own robot. He was working hard at the robot. He taught it to walk the shortest path from one point to another, to record all its movements, but like in many Draude's programs, there was a bug — the robot didn't always walk the shortest path. Fortunately, the robot recorded its own movements correctly. Now Draude wants to find out when his robot functions wrong. Heh, if Draude only remembered the map of the field, where he tested the robot, he would easily say if the robot walked in the right direction or not. But the field map was lost never to be found, that's why he asks you to find out if there exist at least one map, where the path recorded by the robot is the shortest.

The map is an infinite checkered field, where each square is either empty, or contains an obstruction. It is also known that the robot never tries to run into the obstruction. By the recorded robot's movements find out if there exist at least one such map, that it is possible to choose for the robot a starting square (the starting square should be empty) such that when the robot moves from this square its movements coincide with the recorded ones (the robot doesn't run into anything, moving along empty squares only), and the path from the starting square to the end one is the shortest.

In one movement the robot can move into the square (providing there are no obstrutions in this square) that has common sides with the square the robot is currently in.

Input

The first line of the input file contains the recording of the robot's movements. This recording is a non-empty string, consisting of uppercase Latin letters LRU and D, standing for movements left, right, up and down respectively. The length of the string does not exceed 100.

Output

In the first line output the only word OK (if the above described map exists), or BUG (if such a map does not exist).

Sample test(s)
input
LLUUUR
output
OK
input
RRUULLDD
output
BUG
在不知道地图什么样的情况下,给你一条走过的路径,让你判断从起点到终点的路径是否为最短距离,地图有空格也有障碍,如果有一种地图满足就输出ok。
地图不确定,路径确定,要想得到最短路,而且只要满足一种地图,而且这种地图可以自己构造,假设起点在200,200的位置,那么如果在走的过程中,同一个地点走过两遍肯定不是最短的,还有一种情况如下图,如果一个点周围不只是一个点走过,那么也不是最短路。

//30 ms	 4000 KB
#include<stdio.h>
#include<string.h>
#define M 1007
int g[M][M];
int dir[4][2]= {{0,1},{0,-1},{1,0},{-1,0}};
char s[107];
int main()
{
    while(scanf("%s",s)!=EOF)
    {
        memset(g,0,sizeof(g));
        g[200][200]=1;
        int len=strlen(s),flag=0,x=200,y=200;
        for(int i=0; i<len; i++)
        {
            if(s[i]=='L')
            {
                y--;
                if(g[x][y])
                {
                    flag=1;
                    break;
                }
                g[x][y]=1;
            }
            else if(s[i]=='R')
            {
                y++;
                if(g[x][y])
                {
                    flag=1;
                    break;
                }
                g[x][y]=1;
            }
            else if(s[i]=='U')
            {
                x--;
                if(g[x][y])
                {
                    flag=1;
                    break;
                }
                g[x][y]=1;
            }
            else if(s[i]=='D')
            {
                x++;
                if(g[x][y])
                {
                    flag=1;
                    break;
                }
                g[x][y]=1;
            }
            int cnt=0;
            for(int i=0; i<4; i++)//判断这个点周围的四个方向有几个已经走过了
            {
                int xx=x+dir[i][0];
                int yy=y+dir[i][1];
                if(g[xx][yy])cnt++;
            }
            if(cnt!=1)
            {
                flag=1;
                break;
            }
        }
        if(!flag)printf("OK\n");
        else printf("BUG\n");
    }
    return 0;
}


资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 在当今的软件开发领域,自动化构建与发布是提升开发效率和项目质量的关键环节。Jenkins Pipeline作为一种强大的自动化工具,能够有效助力Java项目的快速构建、测试及部署。本文将详细介绍如何利用Jenkins Pipeline实现Java项目的自动化构建与发布。 Jenkins Pipeline简介 Jenkins Pipeline是运行在Jenkins上的一套工作流框架,它将原本分散在单个或多个节点上独立运行的任务串联起来,实现复杂流程的编排与可视化。它是Jenkins 2.X的核心特性之一,推动了Jenkins从持续集成(CI)向持续交付(CD)及DevOps的转变。 创建Pipeline项目 要使用Jenkins Pipeline自动化构建发布Java项目,首先需要创建Pipeline项目。具体步骤如下: 登录Jenkins,点击“新建项”,选择“Pipeline”。 输入项目名称和描述,点击“确定”。 在Pipeline脚本中定义项目字典、发版脚本和预发布脚本。 编写Pipeline脚本 Pipeline脚本是Jenkins Pipeline的核心,用于定义自动化构建和发布的流程。以下是一个简单的Pipeline脚本示例: 在上述脚本中,定义了四个阶段:Checkout、Build、Push package和Deploy/Rollback。每个阶段都可以根据实际需求进行配置和调整。 通过Jenkins Pipeline自动化构建发布Java项目,可以显著提升开发效率和项目质量。借助Pipeline,我们能够轻松实现自动化构建、测试和部署,从而提高项目的整体质量和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值