HDU 3849 By Recognizing These Guys, We Find Social Networks Useful 求桥及其节点

本文探讨了如何在社交网络中识别关键关系,这些关系一旦断裂会导致个体间失去联系。通过构建图模型并运用Tarjan算法求解桥问题,文章提供了一种有效的方法来找出这些重要的连接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


By Recognizing These Guys, We Find Social Networks Useful

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)
Total Submission(s): 1709    Accepted Submission(s): 451


Problem Description
Social Network is popular these days.The Network helps us know about those guys who we are following intensely and makes us keep up our pace with the trend of modern times.
But how?
By what method can we know the infomation we wanna?In some websites,maybe Renren,based on social network,we mostly get the infomation by some relations with those "popular leaders".It seems that they know every lately news and are always online.They are alway publishing breaking news and by our relations with them we are informed of "almost everything".
(Aha,"almost everything",what an impulsive society!)
Now,it's time to know what our problem is.We want to know which are the key relations make us related with other ones in the social network.
Well,what is the so-called key relation?
It means if the relation is cancelled or does not exist anymore,we will permanently lose the relations with some guys in the social network.Apparently,we don't wanna lose relations with those guys.We must know which are these key relations so that we can maintain these relations better.
We will give you a relation description map and you should find the key relations in it.
We all know that the relation bewteen two guys is mutual,because this relation description map doesn't describe the relations in twitter or google+.For example,in the situation of this problem,if I know you,you know me,too.
 

Input
The input is a relation description map.
In the first line,an integer t,represents the number of cases(t <= 5).
In the second line,an integer n,represents the number of guys(1 <= n <= 10000) and an integer m,represents the number of relations between those guys(0 <= m <= 100000).
From the second to the (m + 1)the line,in each line,there are two strings A and B(1 <= length[a],length[b] <= 15,assuming that only lowercase letters exist).
We guanrantee that in the relation description map,no one has relations with himself(herself),and there won't be identical relations(namely,if "aaa bbb" has already exists in one line,in the following lines,there won't be any more "aaa bbb" or "bbb aaa").
We won't guarantee that all these guys have relations with each other(no matter directly or indirectly),so of course,maybe there are no key relations in the relation description map.
 

Output
In the first line,output an integer n,represents the number of key relations in the relation description map.
From the second line to the (n + 1)th line,output these key relations according to the order and format of the input.
 

Sample Input
   
1 4 4 saerdna aswmtjdsj aswmtjdsj mabodx mabodx biribiri aswmtjdsj biribiri
 

Sample Output
   
1 saerdna aswmtjdsj
 

Source
 

Recommend
chenyongfu   |   We have carefully selected several similar problems for you:   3848  3851  3854  3857  3858 


题意是说给你一些名字,有的可以联系,让你求去掉一种联系之后有多少人可以两两联系。即求桥问题,首先用map建好图然后tarjan求桥的算法求出来。

#include<stdio.h>
#include<string.h>
#include<string>
#include<map>
#include<algorithm>
#define M 10007
using namespace std;
int n,m,num,cnt,countt;
int dfn[M],low[M],head[M],bridge[M];
struct sa
{
    int u,v,next;
} edg[M*20];
void addedge(int u,int v)
{
    edg[cnt].u=u;
    edg[cnt].v=v;
    edg[cnt].next=head[u];
    head[u]=cnt++;
}

void tarjan(int u,int fa)
{
    dfn[u]=low[u]=++num;
    for(int i=head[u]; i!=-1; i=edg[i].next)
    {
        int v=edg[i].v;
        if(v==fa)continue;
        if(!dfn[v])
        {
            tarjan(v,u);
            low[u]=min(low[u],low[v]);
            if(low[v]>dfn[u])//桥
            {
                bridge[countt++]=i;
            }
        }
        else
            low[u]=min(low[u],dfn[v]);
    }
}

int main()
{
    int t;
    char s1[20],s2[20];
    scanf("%d",&t);
    while(t--)
    {
        map<string,int>mp;
        map<int,string>mmp;
        memset(dfn,0,sizeof(dfn));
        memset(head,-1,sizeof(head));
        num=cnt=countt=0;
        int a=1;
        scanf("%d%d",&n,&m);
        for(int i=0; i<m; i++)
        {
            scanf("%s%s",s1,s2);
            if(!mp[s1])
            {
                mp[s1]=a;
                mmp[a]=s1;
                a++;
            }
            if(!mp[s2])
            {
                mp[s2]=a;
                mmp[a]=s2;
                a++;
            }
            addedge(mp[s1],mp[s2]);
            addedge(mp[s2],mp[s1]);
        }
        tarjan(1,-1);
        int i;
        for(i=1; i<=n; i++)
            if(!dfn[i])
                break;
        if(i<=n)
        {
            printf("0\n");
            continue;
        }
        printf("%d\n",countt);
        sort(bridge,bridge+countt);
        for(int i=0; i<countt; i++)
        {
            int j=bridge[i];
            j=j/2*2;
            int x=edg[j].u;
            int y=edg[j].v;
            if(x!=y)
                printf("%s %s\n",mmp[x].c_str(),mmp[y].c_str());
        }
    }
}


好的,关于 HDU4992 所有原根的问题,我可以给出以下解答: 1. 首先,我们需要知道什么是原根。原根是指模 n 意义下,所有与 n 互质的数 a 的最小正整数 k 次幂对 n 取模的值覆盖了所有与 n 互质的数。简单来说,就是如果一个数 a 是模 n 意义下的原根,那么 a 的任何正整数次幂对 n 取模的值都不相同,且能覆盖所有与 n 互质的数。 2. 为了模 n 意义下的所有原根,我们需要先出与 n 互质的数的个数 phi(n)。phi(n) 可以使用欧拉函数出。 3. 然后,我们需要枚举模 n 意义下的所有数,判断它是否是原根。具体来说,对于每个 a,我们需要判断 a 的每个小于 phi(n) 的正整数次幂对 n 取模的值是否都不相同,且能覆盖所有与 n 互质的数。如果是,那么 a 就是模 n 意义下的原根。 4. 代码实现可以参考以下 Java 代码: ``` import java.util.*; public class Main { static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } static int phi(int n) { int res = n; for (int i = 2; i * i <= n; i++) { if (n % i == 0) { res = res / i * (i - 1); while (n % i == 0) { n /= i; } } } if (n > 1) { res = res / n * (n - 1); } return res; } static int pow(int a, int b, int mod) { int res = 1; while (b > 0) { if ((b & 1) != 0) { res = res * a % mod; } a = a * a % mod; b >>= 1; } return res; } static boolean check(int a, int n, int phi) { for (int i = 1, j = pow(a, i, n); i <= phi; i++, j = j * a % n) { if (j == 1) { return false; } } return true; } public static void main(String[] args) { Scanner scanner = new Scanner(System.in); while (scanner.hasNext()) { int n = scanner.nextInt(); int phi = phi(n); List<Integer> ans = new ArrayList<>(); for (int i = 1; i < n; i++) { if (gcd(i, n) == 1 && check(i, n, phi)) { ans.add(i); } } Collections.sort(ans); for (int x : ans) { System.out.print(x + " "); } System.out.println(); } } } ``` 其中,gcd 函数用于最大公约数,phi 函数用于欧拉函数,pow 函数用于快速幂模,check 函数用于判断一个数是否是原根。在主函数中,我们依次读入每个 n,出 phi(n),然后枚举模 n 意义下的所有数,判断它是否是原根,将所有原根存入一个 List 中,最后排序输出即可。 希望我的回答能够帮到你,如果你有任何问题,欢迎随时提出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值