Summary on 20080707: Hibernate operation on many-to-one relation

本文详细介绍了Hibernate中多对一关系映射的具体实现方式,包括如何在Java类中定义对应关系,以及在配置文件中设置关键属性如not-null和cascade等。还特别注意了插入数据时的顺序问题。

Hibernate many-to-one relation mapping:

public class Student{

    .....

    private CoreClass class;



    public CoreClass getter....

    public void setter

}





public class CoreClass{

....

}

<many-to-one name="class" column="classId" class="CoreClass" not-null="" cascade=""/>

Note

1. for the attribute not-null, if set to 'true', before insert data to database, hibernate will check, if class is null, throw exception before insert data

2. cascasde: mostly, the value should be 'save-update', should not be any value related to 'delete'

3. the order of insert one instance of class to database( class has already been assigned with vlaue) 3.1 insert class instance to db(if there is any mapping setting for CoreClass, it will done first) 3.2 insert student instance to db

计及源荷不确定性的综合能源生产单元运行调度与容量配置优化研究(Matlab代码实现)内容概要:本文围绕“计及源荷不确定性的综合能源生产单元运行调度与容量配置优化”展开研究,利用Matlab代码实现相关模型的构建与仿真。研究重点在于综合能源系统中多能耦合特性以及风、光等可再生能源出力和负荷需求的不确定性,通过鲁棒优化、场景生成(如Copula方法)、两阶段优化等手段,实现对能源生产单元的运行调度与容量配置的协同优化,旨在提高系统经济性、可靠性和可再生能源消纳能力。文中提及多种优化算法(如BFO、CPO、PSO等)在调度与预测中的应用,并强调了模型在实际能源系统规划与运行中的参考价值。; 适合人群:具备一定电力系统、能源系统或优化理论基础的研究生、科研人员及工程技术人员,熟悉Matlab编程和基本优化工具(如Yalmip)。; 使用场景及目标:①用于学习和复现综合能源系统中考虑不确定性的优化调度与容量配置方法;②为含高比例可再生能源的微电网、区域能源系统规划设计提供模型参考和技术支持;③开展学术研究,如撰写论文、课题申报时的技术方案借鉴。; 阅读建议:建议结合文中提到的Matlab代码和网盘资料,先理解基础模型(如功率平衡、设备模型),再逐步深入不确定性建模与优化求解过程,注意区分鲁棒优化、随机优化与分布鲁棒优化的适用场景,并尝试复现关键案例以加深理解。
### 关于 Relation Network 的 Few-Shot Learning 复现 #### 使用 PyTorch 实现 Relation Network 以下是基于 PyTorch 的 Relation Network 实现代码示例: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import transforms, datasets class CNNEncoder(nn.Module): """CNN Encoder""" def __init__(self): super(CNNEncoder, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=0), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(2)) self.layer2 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, padding=0), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(2)) self.layer3 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU()) self.layer4 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU()) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) return out.view(out.size(0), -1) class RelationNetwork(nn.Module): """Relation Network""" def __init__(self, input_size, hidden_size): super(RelationNetwork, self).__init__() self.fc1 = nn.Linear(input_size*2, hidden_size) self.fc2 = nn.Linear(hidden_size, 1) def forward(self, x): out = torch.relu(self.fc1(x)) out = torch.sigmoid(self.fc2(out)) return out def train(model_encoder, model_relation, optimizer, criterion, support_set, query_set, device='cpu'): model_encoder.train() model_relation.train() support_features = model_encoder(support_set.to(device)) # Extract features from the support set query_features = model_encoder(query_set.to(device)) # Extract features from the query set relations = [] for i in range(len(support_features)): pair_feature = torch.cat([support_features[i], query_features], dim=-1) # Concatenate pairs of features relation_score = model_relation(pair_feature).view(-1) # Compute similarity score relations.append(relation_score) output = torch.stack(relations).squeeze() # Stack all scores into a tensor target = torch.zeros(output.shape[0]).to(device) # Create ground truth labels loss = criterion(output, target) # Calculate loss optimizer.zero_grad() loss.backward() optimizer.step() return loss.item() ``` 上述代码实现了 `CNNEncoder` 和 `RelationNetwork`,并定义了一个简单的训练函数。 --- #### TensorFlow 实现 Relation Network 下面是基于 TensorFlow 的 Relation Network 实现代码示例: ```python import tensorflow as tf from tensorflow.keras.layers import Conv2D, BatchNormalization, MaxPooling2D, Flatten, Dense, ReLU, Input, concatenate from tensorflow.keras.models import Model def create_cnn_encoder(): inputs = Input(shape=(84, 84, 3)) x = Conv2D(filters=64, kernel_size=3)(inputs) x = BatchNormalization()(x) x = ReLU()(x) x = MaxPooling2D(pool_size=2)(x) x = Conv2D(filters=64, kernel_size=3)(x) x = BatchNormalization()(x) x = ReLU()(x) x = MaxPooling2D(pool_size=2)(x) x = Conv2D(filters=64, kernel_size=3, padding="same")(x) x = BatchNormalization()(x) x = ReLU()(x) x = Conv2D(filters=64, kernel_size=3, padding="same")(x) x = BatchNormalization()(x) x = ReLU()(x) outputs = Flatten()(x) encoder_model = Model(inputs=inputs, outputs=outputs, name="cnn_encoder") return encoder_model def create_relation_network(input_dim, hidden_units): feature_a = Input(shape=input_dim) feature_b = Input(shape=input_dim) concatenated = concatenate([feature_a, feature_b]) x = Dense(units=hidden_units, activation="relu")(concatenated) x = Dense(units=1, activation="sigmoid")(x) relation_model = Model(inputs=[feature_a, feature_b], outputs=x, name="relation_network") return relation_model # Example usage encoder = create_cnn_encoder() relation_net = create_relation_network(input_dim=1600, hidden_units=8) ``` 此代码展示了如何使用 Keras API 构建 CNN 编码器和关系网络模型。 --- #### 方法概述 Relation Network 是一种通过学习嵌入空间中的相似性来解决小样本分类问题的有效方法[^2]。其核心思想在于设计一个深度非线性距离度量函数,该函数能够捕捉查询样本和支持集之间的关系。相比其他元学习方法,Relation Network 更加简洁高效,在多种任务上表现出色。 为了验证其实效性,可以采用 Omniglot 或 Mini-ImageNet 数据集进行实验,并按照 N-way-K-shot 设置划分支持集与查询集。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值