Hdu 2639 Bone Collector II

本文探讨了骨收集器II问题,即在给定的骨头数量、背包容量和第K大需求下,如何计算最大的骨头总价值。通过分析案例输入输出,学习如何实现01背包算法来解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bone Collector II

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 921    Accepted Submission(s): 440


题目链接

Problem Description
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:

Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602

Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.

If the total number of different values is less than K,just ouput 0.
 

Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
 

Output
One integer per line representing the K-th maximum of the total value (this number will be less than 231).
 

Sample Input
  
3 5 10 2 1 2 3 4 5 5 4 3 2 1 5 10 12 1 2 3 4 5 5 4 3 2 1 5 10 16 1 2 3 4 5 5 4 3 2 1
 

Sample Output
  
12 2 0
 

Author
teddy
 

Source
 

Recommend
teddy

求01背包的第k大解。

#include<stdio.h>
#include<string.h>

int w[101],v[101];
int a[31],b[31];
int dp[1001][31];

int main(void)
{
	int T,N,V,K,i,j,m,n_a,n_b,n_c;
//	freopen("d:\\in.txt","r",stdin);
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d%d",&N,&V,&K);
		for(i=1;i<=N;i++)
			scanf("%d",&v[i]);
		for(i=1;i<=N;i++)
			scanf("%d",&w[i]);
		memset(dp,0,sizeof(dp));
		for(i=1;i<=N;i++)
			for(j=V;j>=w[i];j--)
			{
				for(m=1;m<=K;m++)
					a[m]=dp[j-w[i]][m]+v[i];
				for(m=1;m<=K;m++)
					b[m]=dp[j][m];
				a[m]=b[m]=-1;
				n_a=n_b=n_c=1;
				while(n_c<=K && (n_a<= K || n_b<=K))
				{
					if(a[n_a]>=b[n_b])
						dp[j][n_c]=a[n_a++];
					else
						dp[j][n_c]=b[n_b++];
					if(dp[j][n_c]!=dp[j][n_c-1])
						n_c++;
				}
			}
		printf("%d\n",dp[V][K]);
	}
	return 0;
}


 

### HDU OJ 2610 2611 题目差异对比 #### 题目背景与描述 HDU OJ 平台上的第2610题第2611题均属于算法挑战类题目,旨在测试参赛者的编程能力逻辑思维能力。然而两道题目在具体的要求、输入输出格式以及解法复杂度方面存在显著不同。 对于第2610题《Bone Collector》,这是一个经典的背包题变种案例[^1]。题目设定为收集骨头,在给定容量下最大化所获得的价值。该题通常通过动态规划方法求解,时间复杂度相对较低,适合初学者理解掌握基础的优化技巧。 而第2611题《Pick Apples》则涉及到更复杂的图论概念——最短路径寻找。在这个场景中,参与者扮演的角色需要在一个由节点组成的果园地图内移动来采摘苹果,并返回起点位置使得摘得果实数量最多的同时行走距离最小化。此类题往往借助Dijkstra或Floyd-Warshall等经典算法实现高效处理方案的设计[^2]。 #### 输入输出样例分析 - **2610 Bone Collector** 输入部分提供了若干组数据集,每组包含两个整数n(物品数目)v(背包体积),随后给出各物品的具体重量wi及其对应价值vi。最终程序需输出能够载的最大价值。 输出仅限于单个数值表示最佳解决方案下的最高得分情况。 - **2611 Pick Apples** 此处不仅涉及到了边权(即两点间所需消耗的时间/路程),还增加了顶点属性(如某棵树上挂有的果子量)。因此除了常规的邻接矩阵外还需要额外记录这些特殊参数用于辅助计算过程。最后的结果应呈现一条完整的路线列表连同累计收获了多少颗水果的信息一起展示出来。 综上所述,尽管两者都围绕着资源分配展开讨论,但从实际操作层面来看却有着本质区别:前者聚焦于单一维度内的最优组合选取;后者则是多因素综合考量下的全局最优策略制定。 ```cpp // 示例代码片段 - 动态规划解决2610 Bone Collector #include <iostream> using namespace std; int main() { int n, v; cin >> n >> v; vector<int> w(n), val(n); for (auto& i : w) cin >> i; for (auto& j : val) cin >> j; // dp数组初始化... } // 示例代码片段 - 图论算法应用于2611 Pick Apples #include <queue> #define INF 0x3f3f3f3f typedef pair<int,int> PII; vector<vector<PII>> adjList(N); // 存储加权有向图 priority_queue<PII,vector<PII>,greater<PII>> pq; bool vis[N]; memset(vis,false,sizeof(vis)); while(!pq.empty()){ auto [dist,node]=pq.top(); pq.pop(); if(vis[node]) continue; ... } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值