766. 托普利茨矩阵 leetcode

如果一个矩阵的每一方向由左上到右下的对角线上具有相同元素,那么这个矩阵是 托普利茨矩阵。

给定一个 M x N 的矩阵,当且仅当它是托普利茨矩阵时返回 True

示例 1:

输入: 
matrix = [
  [1,2,3,4],
  [5,1,2,3],
  [9,5,1,2]
]
输出: True
解释:
在上述矩阵中, 其对角线为:
"[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]"。
各条对角线上的所有元素均相同, 因此答案是True。

示例 2:

输入:
matrix = [
  [1,2],
  [2,2]
]
输出: False
解释: 
对角线"[1, 2]"上的元素不同。

说明:

  1.  matrix 是一个包含整数的二维数组。
  2. matrix 的行数和列数均在 [1, 20]范围内。
  3. matrix[i][j] 包含的整数在 [0, 99]范围内。

进阶:

  1. 如果矩阵存储在磁盘上,并且磁盘内存是有限的,因此一次最多只能将一行矩阵加载到内存中,该怎么办?
  2. 如果矩阵太大以至于只能一次将部分行加载到内存中,该怎么办?

解题思路:
除了最右和最下的元素,判断grid[i][j] == grid[i+1][j+1],不成立时反回false。

代码:
class Solution {
    public boolean isToeplitzMatrix(int[][] matrix) {
        boolean res = true;
        int m = matrix.length;
        int n = matrix[0].length;
        for(int i=0; i<m-1; i++){
            for(int j=0; j<n-1; j++){
   
                    if(matrix[i][j] != matrix[i+1][j+1]) return false;

            }
        }
        return true;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值