enumerate all the files in the current directory

   CFileFind finder;
   BOOL bWorking = finder.FindFile("*.*");
   while (bWorking)
   {
      bWorking = finder.FindNextFile();
      cout << (LPCTSTR) finder.GetFileName() << endl;
   }
def search_astra_datalog( directory: str = os.getcwd(), filelist: list = [], depth: int = 0, max_depth: int = 10, ) -> list: """ Traverse the files and folders from the current working directory downwards to find and collect astra data log. Parameters ---------- directory : str, default current working directory Used to specify the absolute starting directory path. By default, it starts from the directory path where the script is run, and you can also customize the directory path. filelist : list, default [] The directory path used to store the astra data log from the collected. The default is an empty list, or you can use a defined list. depth : int, default 0 Used to specify the starting directory level. If you know the exact starting directory level, you can define it here to reduce operating time. max_depth : int, default 10 Used to specify the ending directory level. You can specify the deepest directory level so that you can end the traversal early. Returns ------- list The returns contains the absolute directory path of all astra data logs. Notes ----- ...... """ new_directory = directory if os.path.isfile(directory): if ( "csv" in directory and not "event" in directory and not "tar.gz" in directory and "#" in directory ): filelist.append(directory) elif os.path.isdir(directory): if depth < max_depth: try: for s in os.listdir(directory): new_directory = os.path.join(directory, s) search_astra_datalog(new_directory, filelist, depth + 1, max_depth) except PermissionError: print(f"Access denied to directoryectory: {directory}") return filelist其中在前一循环输出的new_directory会被第二次循环中的new_directory=directory这一步赋值覆盖么?
08-06
KCONFIG-CONF(1) October 2017 KCONFIG-CONF(1) NAME kconfig-conf - Standalone implementation of the Linux Kconfig parser SYNOPSIS kconfig-conf [options] <KConfig_file> DESCRIPTION The kconfig toolkit support the Kconfig language and implement the parser and the configuration support associated to the KConfig files respecting the Linux kernel KConfig convention. At configuration time: • kconfig-mconf is based on ncurses (menuconfig) • kconfig-conf is based on dialog (config) • kconfig-gconf is based on GTK+ (gconfig) • kconfig-qconf is based on QT (qconfig) Associated tools: • kconfig-diff displays symbols diff between .config files OPTIONS –silentoldconfig Only for kconfig-conf, reload a given .config and regenerate header and command files accordingly. --allnoconfig Set all boolean configuration to no. --allyesconfig Set all boolean configuration to yes. --randconfig Generates a random configuration. ENVIRONMENT Environment variables for ‘*config’ KCONFIG_CONFIG This environment variable can be used to specify a default kernel config file name to override the default name of ".config". KCONFIG_OVERWRITECONFIG If you set KCONFIG_OVERWRITECONFIG in the environment, Kconfig will not break symlinks when .config is a symlink to somewhere else. CONFIG_ If you set CONFIG_ in the environment, Kconfig will prefix all symbols with its value when saving the configuration, instead of using the default, "CONFIG_". Environment variables for ‘{allyes/allmod/allno/rand}config’ KCONFIG_ALLCONFIG The allyesconfig/allmodconfig/allnoconfig/randconfig variants can also use the environment variable KCONFIG_ALLCONFIG as a flag or a filename that contains config symbols that the user requires to be set to a specific value. If KCONFIG_ALLCONFIG is used without a filename where KCONFIG_ALLCONFIG == "" or KCONFIG_ALLCONFIG == "1", "make *config" checks for a file named "all{yes/mod/no/def/random}.config" (corresponding to the *config command that was used) for symbol values that are to be forced. If this file is not found, it checks for a file named "all.config" to contain forced values. This enables you to create "miniature" config (miniconfig) or custom config files containing just the config symbols that you are interested in. Then the kernel config system generates the full .config file, including symbols of your miniconfig file. This 'KCONFIG_ALLCONFIG' file is a config file which contains (usually a subset of all) preset config symbols. These variable settings are still subject to normal dependency checks. Examples: KCONFIG_ALLCONFIG=custom-notebook.config make allnoconfig or KCONFIG_ALLCONFIG=mini.config make allnoconfig or make KCONFIG_ALLCONFIG=mini.config allnoconfig These examples will disable most options (allnoconfig) but enable or disable the options that are explicitly listed in the specified mini-config files. Environment variables for ‘randconfig’ KCONFIG_SEED You can set this to the integer value used to seed the RNG, if you want to somehow debug the behaviour of the kconfig parser/frontends. If not set, the current time will be used. KCONFIG_PROBABILITY This variable can be used to skew the probabilities. See /usr/share/doc/kconfig-frontends/kconfig.txt.gz. Environment variables for 'silentoldconfig' KCONFIG_NOSILENTUPDATE If this variable has a non-blank value, it prevents silent kernel config updates (requires explicit updates). KCONFIG_AUTOCONFIG This environment variable can be set to specify the path name of the "auto.conf" file. Its default value is "include/config/auto.conf". KCONFIG_TRISTATE This environment variable can be set to specify the path name of the "tristate.conf" file. Its default value is "include/config/tristate.conf". KCONFIG_AUTOHEADER This environment variable can be set to specify the path name of the "autoconf.h" (header) file. Its default value is "include/generated/autoconf.h". HISTORY June 2017, Man page originally compiled by Philippe Thierry (phil at reseau-libre dot com) Philippe Thierry kconfig-conf Man Page KCONFIG-CONF(1) 这是手册
08-08
#!/usr/bin/env python -- coding: utf-8 -- import os import re import sys import argparse import xlwt from collections import defaultdict 分区名称映射表(前缀 → 友好名称) PARTITION_NAME_MAP = { ‘02_’: ‘system’, ‘03_’: ‘vendor’, ‘04_’: ‘product’, ‘05_’: ‘odm’, ‘06_’: ‘my_product’, ‘07_’: ‘my_engineering’, ‘08_’: ‘my_stock’, ‘09_’: ‘my_heytap’, ‘10_’: ‘my_company’, ‘11_’: ‘my_carrier’, ‘12_’: ‘my_region’, ‘13_’: ‘my_preload’, ‘14_’: ‘data’, ‘15_’: ‘my_bigball’, ‘16_’: ‘my_manifest’, ‘17_system_dlkm’: ‘system_dlkm’, ‘17_vendor_dlkm’: ‘vendor_dlkm’, ‘17_cache’: ‘cache’ } def parse_du_file(file_path): “”“解析du命令输出文件并转换为MB”“” data = {} try: with open(file_path, ‘r’) as f: for line in f: if ‘Permission denied’ in line or ‘No such file’ in line or not line.strip(): continue match = re.match(r'(\d+\.?\d*)\s*([KMG]?)[Bb]?\s+(.*)', line.strip()) if match: size, unit, path = match.groups() size = float(size) # 单位转换到MB if unit == 'K': size = size / 1024.0 elif unit == '': size = size / (1024*1024.0) elif unit == 'M': pass elif unit == 'G': size = size * 1024.0 data[path] = round(size, 4) except IOError as e: print("警告: 无法读取文件 {}: {}".format(file_path, str(e))) return data def extract_file_prefix(filename): “”“提取文件前缀”“” if filename.startswith(‘17_’): return filename.replace(‘.txt’, ‘’) match = re.match(r’^(\d+)', filename) return match.group(1) if match else "other" def is_main_partition_file(filename, prefix): “”“检查是否为主分区文件”“” if prefix.startswith(‘17_’): return True expected_name = prefix + PARTITION_NAME_MAP[prefix] + “.txt” return filename == expected_name def generate_dual_report(folder1, folder2, output_xlsx): “”“生成双机对比报告”“” folder1_name = os.path.basename(os.path.normpath(folder1)) folder2_name = os.path.basename(os.path.normpath(folder2)) for folder in [folder1, folder2]: if not os.path.exists(folder): print("错误: 目录不存在 - {}".format(folder)) return "目录 {} 不存在,请检查路径".format(folder) if not os.path.isdir(folder): print("错误: 路径不是目录 - {}".format(folder)) return "{} 不是有效目录".format(folder) # 初始化数据结构 machine1_main_data = {} machine2_main_data = {} machine1_all_files = defaultdict(dict) machine2_all_files = defaultdict(dict) # 收集数据 for folder_path, main_dict, all_dict in [ (folder1, machine1_main_data, machine1_all_files), (folder2, machine2_main_data, machine2_all_files) ]: print("处理目录: {}".format(folder_path)) try: for filename in os.listdir(folder_path): if not filename.endswith('.txt'): continue prefix = extract_file_prefix(filename) if prefix == '01_' or prefix not in PARTITION_NAME_MAP: continue file_path = os.path.join(folder_path, filename) partition_name = PARTITION_NAME_MAP[prefix] file_data = parse_du_file(file_path) all_dict[filename] = file_data if is_main_partition_file(filename, prefix): print("解析主分区文件: {}".format(file_path)) main_dict[prefix] = file_data except OSError as e: print("目录访问错误: {}".format(str(e))) return "无法访问目录 {}: {}".format(folder_path, str(e)) # 创建Excel工作簿 try: wb = xlwt.Workbook(encoding='utf-8') # ====== 修复:正确定义所有样式变量 ====== header_style = xlwt.easyxf('font: bold on') title_style = xlwt.easyxf('font: bold on, height 280; align: wrap on, vert centre') normal_style = xlwt.easyxf() added_style = xlwt.easyxf('pattern: pattern solid, fore_colour light_green;') removed_style = xlwt.easyxf('pattern: pattern solid, fore_colour rose;') summary_style = xlwt.easyxf('font: bold on, color blue;') wrap_style = xlwt.easyxf('align: wrap on, vert centre') # 修复:正确定义wrap_style # ====== 创建总览Sheet页 ====== ws_overview = wb.add_sheet('总览') print("创建总览Sheet页(仅主文件数据)") current_row = 0 # 写入总览标题 ws_overview.write_merge( current_row, current_row, 0, 5, "存储使用总览(仅主分区文件)", title_style ) current_row += 1 # 写入文件夹名称 ws_overview.write(current_row, 1, folder1_name, header_style) ws_overview.write(current_row, 2, folder2_name, header_style) current_row += 1 # 写入表头(增加备注列) headers = ['分区', '总大小(MB)', '总大小(MB)', '差值(MB)', '标记', '备注(增大TOP3)'] for col, header in enumerate(headers): ws_overview.write(current_row, col, header, header_style) current_row += 1 # 存储各分区汇总数据 overview_data = [] total_machine1 = 0.0 total_machine2 = 0.0 # 按分区顺序处理数据 for prefix in sorted(PARTITION_NAME_MAP.keys()): partition_name = PARTITION_NAME_MAP[prefix] # 跳过data分区 if partition_name == 'data': continue # 获取主文件数据 data1 = machine1_main_data.get(prefix, {}) data2 = machine2_main_data.get(prefix, {}) # 计算主文件总大小 partition_total1 = round(sum(data1.values()), 2) partition_total2 = round(sum(data2.values()), 2) diff = partition_total1 - partition_total2 # 更新总计 total_machine1 += partition_total1 total_machine2 += partition_total2 # 确定标记样式 if diff > 0: mark = "增加" style = added_style elif diff < 0: mark = "减少" style = removed_style else: mark = "无变化" style = normal_style # 计算分区中增大的TOP3路径 top_notes = [] if diff > 0: # 只在分区增大时计算TOP路径 path_diffs = [] all_paths = set(data1.keys()) | set(data2.keys()) for path in all_paths: size1 = data1.get(path, 0.0) size2 = data2.get(path, 0.0) path_diff = size1 - size2 if path_diff > 0: # 只记录增大的路径 path_diffs.append((path, path_diff)) # 按增大值降序排序,取TOP3 path_diffs.sort(key=lambda x: x[1], reverse=True) for i, (path, diff_val) in enumerate(path_diffs[:3]): # 截断过长的路径名 if len(path) > 50: path = "..." + path[-47:] top_notes.append("{}. {}: +{:.2f}MB".format(i+1, path, diff_val)) # 保存分区数据 overview_data.append({ 'name': partition_name, 'machine1': partition_total1, 'machine2': partition_total2, 'diff': diff, 'style': style, 'mark': mark, 'notes': "\n".join(top_notes) if top_notes else "无显著增大路径" }) # 写入行数据到总览页(增加备注列) ws_overview.write(current_row, 0, partition_name, style) ws_overview.write(current_row, 1, partition_total1, style) ws_overview.write(current_row, 2, partition_total2, style) ws_overview.write(current_row, 3, diff, style) ws_overview.write(current_row, 4, mark, style) ws_overview.write(current_row, 5, overview_data[-1]['notes'], wrap_style) # 使用已定义的wrap_style current_row += 1 # 添加空行 current_row += 1 # 写入总计行 total_diff = total_machine1 - total_machine2 if total_diff > 0: total_mark = "总增加" total_style = added_style elif total_diff < 0: total_mark = "总减少" total_style = removed_style else: total_mark = "无变化" total_style = normal_style ws_overview.write(current_row, 0, "总计", header_style) ws_overview.write(current_row, 1, total_machine1, header_style) ws_overview.write(current_row, 2, total_machine2, header_style) ws_overview.write(current_row, 3, total_diff, header_style) ws_overview.write(current_row, 4, total_mark, header_style) ws_overview.write(current_row, 5, "", header_style) # 备注列留空 # 设置备注列宽度(100字符) ws_overview.col(5).width = 256 * 100 # ====== 为每个文件创建单独的Sheet页(保持不变) ====== # 获取所有唯一的文件名(两个文件夹的并集) all_filenames = sorted(set(machine1_all_files.keys()) | set(machine2_all_files.keys())) for filename in all_filenames: # 提取文件前缀 prefix = extract_file_prefix(filename) # 跳过无效前缀 if prefix not in PARTITION_NAME_MAP: continue # 获取分区名称 partition_name = PARTITION_NAME_MAP[prefix] # 创建Sheet页名称(文件名不带扩展名) sheet_name = filename.replace('.txt', '') if len(sheet_name) > 31: # Excel sheet名称长度限制 sheet_name = sheet_name[:31] # 创建Sheet页 ws = wb.add_sheet(sheet_name) print("创建文件Sheet页: {}".format(sheet_name)) # 当前行指针 current_row = 0 # 写入分区标题 title = "分区: {} - 文件: {}".format(partition_name, filename) ws.write_merge( current_row, current_row, 0, 5, title, title_style ) current_row += 1 # 写入文件夹名称 ws.write_merge(current_row, current_row, 0, 1, folder1_name, header_style) ws.write_merge(current_row, current_row, 2, 3, folder2_name, header_style) ws.write(current_row, 4, "差异(M)", header_style) ws.write(current_row, 5, "标记", header_style) current_row += 1 # 写入表头 headers = ['路径', '大小(M)', '路径', '大小(M)', '差异(M)', '标记'] for col, header in enumerate(headers): ws.write(current_row, col, header, header_style) current_row += 1 # 获取文件数据 data1 = machine1_all_files.get(filename, {}) data2 = machine2_all_files.get(filename, {}) # 获取所有路径(合并两个文件夹的路径) all_paths = sorted(set(data1.keys()) | set(data2.keys())) # 初始化变化统计数据 total_increase = 0.0 # 增大总和 total_decrease = 0.0 # 减小总和 total_added = 0.0 # 新增文件总和 total_removed = 0.0 # 去除文件总和 # 写入数据行 for path in all_paths: size1 = data1.get(path, 0.0) size2 = data2.get(path, 0.0) # 计算差值 diff = size1 - size2 # 确定标记和样式 if size1 == 0 and size2 > 0: mark = "除去" cell_style = removed_style total_removed += size2 elif size1 > 0 and size2 == 0: mark = "新增" cell_style = added_style total_added += size1 else: if diff > 0: mark = "增大" cell_style = added_style total_increase += diff elif diff < 0: mark = "减小" cell_style = removed_style total_decrease += abs(diff) else: mark = "相同" cell_style = normal_style # 写入行数据 # folder1列 if size1 > 0: ws.write(current_row, 0, path, cell_style) ws.write(current_row, 1, size1, cell_style) else: ws.write(current_row, 0, "", cell_style) ws.write(current_row, 1, "", cell_style) # folder2列 if size2 > 0: ws.write(current_row, 2, path, cell_style) ws.write(current_row, 3, size2, cell_style) else: ws.write(current_row, 2, "", cell_style) ws.write(current_row, 3, "", cell_style) # 差异和标记列 ws.write(current_row, 4, diff, cell_style) ws.write(current_row, 5, mark, cell_style) current_row += 1 # 添加文件汇总行 file_total1 = sum(data1.values()) file_total2 = sum(data2.values()) file_diff = file_total1 - file_total2 # 写入汇总行 ws.write(current_row, 0, "文件汇总", header_style) ws.write(current_row, 1, file_total1, header_style) ws.write(current_row, 2, "", header_style) ws.write(current_row, 3, file_total2, header_style) ws.write(current_row, 4, file_diff, header_style) ws.write(current_row, 5, "", header_style) current_row += 1 # 添加变化分类统计行 message = ( u"{partition_name}路径下: " u"减小{total_decrease:.2f}M " u"增大{total_increase:.2f}M " u"新增文件{total_added:.2f}M " u"减少文件{total_removed:.2f}M" ).format( partition_name=partition_name, total_decrease=total_decrease, total_increase=total_increase, total_added=total_added, total_removed=total_removed ) ws.write_merge( current_row, current_row, 0, 5, message, summary_style ) # 保存文件 wb.save(output_xlsx) return "对比报告已成功生成: {}".format(output_xlsx) except Exception as e: import traceback traceback.print_exc() return "生成Excel文件时出错: {}".format(str(e)) 单机拆解模式保持不变 def generate_single_report(folder, output_xlsx): “”“单机拆解模式(保持不变)”“” # …(原有单机拆解模式实现)… if name == “main”: # 创建参数解析器 parser = argparse.ArgumentParser(description=‘存储空间分析工具’) subparsers = parser.add_subparsers(dest=‘mode’, help=‘运行模式’) # 双机对比模式 dual_parser = subparsers.add_parser('dual', help='双机对比模式') dual_parser.add_argument('folder1', help='第一个文件夹路径') dual_parser.add_argument('folder2', help='第二个文件夹路径') dual_parser.add_argument('output', help='输出Excel文件路径') # 单机拆解模式 single_parser = subparsers.add_parser('single', help='单机拆解模式') single_parser.add_argument('folder', help='待分析文件夹路径') single_parser.add_argument('output', help='输出Excel文件路径') # 解析参数 args = parser.parse_args() if args.mode == 'dual': print("运行双机对比模式...") result = generate_dual_report(args.folder1, args.folder2, args.output) elif args.mode == 'single': print("运行单机拆解模式...") result = generate_single_report(args.folder, args.output) else: result = "错误:请选择 'dual' 或 'single' 模式" print(result)基于这个脚本修改总览页输出根据18_lpdump.txt文件生成总大小,差值和标记列 备注的to3差异大小改为大于5M的差异都列出Slot 0: Metadata version: 10.2 Metadata size: 2640 bytes Metadata max size: 65536 bytes Metadata slot count: 3 Header flags: virtual_ab_device Partition table: Name: system_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 1527575 linear super 2048 Name: system_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: system_ext_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 2482807 linear super 1529856 Name: system_ext_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: vendor_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 715543 linear super 4014080 Name: vendor_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: product_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 16159 linear super 4730880 Name: product_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: my_product_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 4165551 linear super 4747264 Name: my_product_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: odm_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 2075367 linear super 8912896 Name: odm_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: my_engineering_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 655 linear super 10989568 Name: my_engineering_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: vendor_dlkm_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 164735 linear super 10991616 Name: vendor_dlkm_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: system_dlkm_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 839 linear super 11157504 Name: system_dlkm_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: my_stock_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 4617279 linear super 11159552 Name: my_stock_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: my_heytap_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 655 linear super 15777792 Name: my_heytap_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: my_carrier_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 655 linear super 15779840 Name: my_carrier_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: my_region_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 168575 linear super 15781888 Name: my_region_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: my_company_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 655 linear super 15951872 Name: my_company_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: my_preload_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 3191663 linear super 15953920 Name: my_preload_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: my_bigball_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 655 linear super 19146752 Name: my_bigball_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Name: my_manifest_a Group: qti_dynamic_partitions_a Attributes: readonly Extents: 0 … 911 linear super 19148800 Name: my_manifest_b Group: qti_dynamic_partitions_b Attributes: readonly Extents: Super partition layout: super: 2048 … 1529624: system_a (1527576 sectors) super: 1529856 … 4012664: system_ext_a (2482808 sectors) super: 4014080 … 4729624: vendor_a (715544 sectors) super: 4730880 … 4747040: product_a (16160 sectors) super: 4747264 … 8912816: my_product_a (4165552 sectors) super: 8912896 … 10988264: odm_a (2075368 sectors) super: 10989568 … 10990224: my_engineering_a (656 sectors) super: 10991616 … 11156352: vendor_dlkm_a (164736 sectors) super: 11157504 … 11158344: system_dlkm_a (840 sectors) super: 11159552 … 15776832: my_stock_a (4617280 sectors) super: 15777792 … 15778448: my_heytap_a (656 sectors) super: 15779840 … 15780496: my_carrier_a (656 sectors) super: 15781888 … 15950464: my_region_a (168576 sectors) super: 15951872 … 15952528: my_company_a (656 sectors) super: 15953920 … 19145584: my_preload_a (3191664 sectors) super: 19146752 … 19147408: my_bigball_a (656 sectors) super: 19148800 … 19149712: my_manifest_a (912 sectors) Block device table: Partition name: super First sector: 2048 Size: 12348030976 bytes Flags: none Group table: Name: default Maximum size: 0 bytes Flags: none Name: qti_dynamic_partitions_a Maximum size: 12343836672 bytes Flags: none Name: qti_dynamic_partitions_b Maximum size: 12343836672 bytes Flags: none Snapshot state: Update state: none Using snapuserd: 0 Using userspace snapshots: 0 Using io_uring: 0 Using o_direct: 0 Using XOR compression: 1 Current slot: _a Boot indicator: booting from unknown slot Rollback indicator: No such file or directory Forward merge indicator: No such file or directory Source build fingerprint:
08-05
基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值