209.长度最小的子数组
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。
示例:
- 输入:s = 7, nums = [2,3,1,2,4,3]
- 输出:2
- 解释:子数组 [4,3] 是该条件下的长度最小的子数组。
提示:
- 1 <= target <= 10^9
- 1 <= nums.length <= 10^5
- 1 <= nums[i] <= 10^5
思路
#暴力解法
这道题目暴力解法当然是 两个for循环,然后不断的寻找符合条件的子序列,时间复杂度很明显是O(n^2)。
代码如下:
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result = INT32_MAX; // 最终的结果
int sum = 0; // 子序列的数值之和
int subLength = 0; // 子序列的长度
for (int i = 0; i < nums.size(); i++) { // 设置子序列起点为i
sum = 0;
for (int j = i; j < nums.size(); j++) { // 设置子序列终止位置为j
sum += nums[j];
if (sum >= s) { // 一旦发现子序列和超过了s,更新result
subLength = j - i + 1; // 取子序列的长度
result = result < subLength ? result : subLength;
break; // 因为我们是找符合条件最短的子序列,所以一旦符合条件就break
}
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};
- 时间复杂度:O(n^2)
- 空间复杂度:O(1)
后面力扣更新了数据,暴力解法已经超时了。
#滑动窗口
接下来就开始介绍数组操作中另一个重要的方法:滑动窗口。
所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果。
在暴力解法中,是一个for循环滑动窗口的起始位置,一个for循环为滑动窗口的终止位置,用两个for循环 完成了一个不断搜索区间的过程。
那么滑动窗口如何用一个for循环来完成这个操作呢。
首先要思考 如果用一个for循环,那么应该表示 滑动窗口的起始位置,还是终止位置。
如果只用一个for循环来表示 滑动窗口的起始位置,那么如何遍历剩下的终止位置?
此时难免再次陷入 暴力解法的怪圈。
所以 只用一个for循环,那么这个循环的索引,一定是表示 滑动窗口的终止位置。
那么问题来了, 滑动窗口的起始位置如何移动呢?
这里还是以题目中的示例来举例,s=7, 数组是 2,3,1,2,4,3,来看一下查找的过程:
最后找到 4,3 是最短距离。
其实从动画中可以发现滑动窗口也可以理解为双指针法的一种!只不过这种解法更像是一个窗口的移动,所以叫做滑动窗口更适合一些。
在本题中实现滑动窗口,主要确定如下三点:
- 窗口内是什么?
- 如何移动窗口的起始位置?
- 如何移动窗口的结束位置?
窗口就是 满足其和 ≥ s 的长度最小的 连续 子数组。
窗口的起始位置如何移动:如果当前窗口的值大于等于s了,窗口就要向前移动了(也就是该缩小了)。
窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,也就是for循环里的索引。
解题的关键在于 窗口的起始位置如何移动,如图所示:
可以发现滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。从而将O(n^2)暴力解法降为O(n)。
C++代码如下:
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result = INT32_MAX;
int sum = 0; // 滑动窗口数值之和
int i = 0; // 滑动窗口起始位置
int subLength = 0; // 滑动窗口的长度
for (int j = 0; j < nums.size(); j++) {
sum += nums[j];
// 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件
while (sum >= s) {
subLength = (j - i + 1); // 取子序列的长度
result = result < subLength ? result : subLength;
sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(1)
一些录友会疑惑为什么时间复杂度是O(n)。
不要以为for里放一个while就以为是O(n^2)啊, 主要是看每一个元素被操作的次数,每个元素在滑动窗后进来操作一次,出去操作一次,每个元素都是被操作两次,所以时间复杂度是 2 × n 也就是O(n)。
#相关题目推荐
59.螺旋矩阵II
给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。
示例:
输入: 3 输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ]
思路
这道题目可以说在面试中出现频率较高的题目,本题并不涉及到什么算法,就是模拟过程,但却十分考察对代码的掌控能力。
要如何画出这个螺旋排列的正方形矩阵呢?
相信很多同学刚开始做这种题目的时候,上来就是一波判断猛如虎。
结果运行的时候各种问题,然后开始各种修修补补,最后发现改了这里那里有问题,改了那里这里又跑不起来了。
大家还记得我们在这篇文章数组:每次遇到二分法,都是一看就会,一写就废 (opens new window)中讲解了二分法,提到如果要写出正确的二分法一定要坚持循环不变量原则。
而求解本题依然是要坚持循环不变量原则。
模拟顺时针画矩阵的过程:
- 填充上行从左到右
- 填充右列从上到下
- 填充下行从右到左
- 填充左列从下到上
由外向内一圈一圈这么画下去。
可以发现这里的边界条件非常多,在一个循环中,如此多的边界条件,如果不按照固定规则来遍历,那就是一进循环深似海,从此offer是路人。
这里一圈下来,我们要画每四条边,这四条边怎么画,每画一条边都要坚持一致的左闭右开,或者左开右闭的原则,这样这一圈才能按照统一的规则画下来。
那么我按照左闭右开的原则,来画一圈,大家看一下:
这里每一种颜色,代表一条边,我们遍历的长度,可以看出每一个拐角处的处理规则,拐角处让给新的一条边来继续画。
这也是坚持了每条边左闭右开的原则。
一些同学做这道题目之所以一直写不好,代码越写越乱。
就是因为在画每一条边的时候,一会左开右闭,一会左闭右闭,一会又来左闭右开,岂能不乱。
代码如下,已经详细注释了每一步的目的,可以看出while循环里判断的情况是很多的,代码里处理的原则也是统一的左闭右开。
代码整体框架:
vector<vector<int>> generateMatrix(int n) {
// 1. 准备一个 n x n 的二维数组,用于存放结果
vector<vector<int>> res(n, vector<int>(n, 0));
// 2. 定义起始位置 (startx, starty),从矩阵的左上角(0, 0)开始
int startx = 0, starty = 0;
// 3. 这个 loop 表示外层要转多少圈(“螺旋圈”)
// 如果 n=3,实际上只需要转 1 圈(最外层),然后中间那个位置单独处理。
// 如果 n=4,则需要转2圈(第一圈是外圈,第二圈是内圈)……
int loop = n / 2;
// 4. 如果 n 是奇数,矩阵中间会有一个单独的点,需要最后补上
// 例如 n=3 的中间点在 (1,1),n=5 的中间点在 (2,2)
int mid = n / 2;
// 5. count 用来给矩阵中的每个格子赋值,从 1 开始,依次递增
int count = 1;
// 6. offset 这个参数,用来控制每一条边遍历的“终止”位置
// 简单来说,每圈都要少走一点,因为边界收缩了
int offset = 1;
// 7. 开始正式的“每圈循环”
// 只要 loop > 0,就表示我们还有“外层圈”没填完
while (loop--) {
// 准备从起始坐标走动
int i = startx;
int j = starty;
// (1)上边,从左到右
for (; j < n - offset; j++) {
res[i][j] = count++;
}
// (2)右边,从上到下
for (; i < n - offset; i++) {
res[i][j] = count++;
}
// (3)下边,从右到左
for (; j > starty; j--) {
res[i][j] = count++;
}
// (4)左边,从下到上
for (; i > startx; i--) {
res[i][j] = count++;
}
// 这一圈走完之后,下一圈的起始位置要往内挪:
startx++;
starty++;
// offset 加 1,因为我们已经把最外面的一圈填完了,下一圈要少走一点
offset++;
}
// 如果 n 是奇数,把中间的那个点补上
if (n % 2 == 1) {
res[mid][mid] = count;
}
return res;
}
重点放在“循环”上,让我们拆开来看
循环次数:while(loop--)
loop
最初是n/2
,意思是这个螺旋矩阵最外层、次外层……需要转多少“圈”。- 每转一圈,就减少 1,直到变成 0 为止。
比如:
- 当 n=3 的时候,
loop = 3/2 = 1
(整数除法只取整),只需要转最外面那一圈,内部就只剩一个点要手动补上。 - 当 n=5 的时候,
loop = 5/2 = 2
,意味着要转两圈(外圈+内圈),剩下的最中间一个点再手动补上。
每一圈开始前的坐标:int i = startx; int j = starty;
- 比如第一圈时,
startx = 0, starty = 0
,就从左上角(0,0)开始转。 - 转完这一圈后,就把
startx
、starty
都加 1,下一圈就从(1,1)这个位置继续转。
为什么有 offset
?
offset
用来控制每一圈里,最右边或最下边到底要走到什么位置。- 第一次最外圈,我们希望把列走到最右边(索引
n-1
),行走到最下面(索引n-1
)。但是由于四个for
循环写在一起,代码中把“结束位置”用了(n - offset)
这种形式,每一圈转完后offset++
,下一圈就会少走一点。
一个更直观理解:
- 第一圈(最外层):最右边索引是
n-1
,最下边索引是n-1
。 - 第二圈:最右边和最下边就要往里缩1格,也就是要走到
n-2
。 - 第三圈:要走到
n-3
,依此类推…… - 于是就把这个往里缩的量归纳成了一个变量
offset
,每转一圈就offset++
来代表“右下边界又缩进了1格”。
四个 for 循环的含义
这是螺旋的核心逻辑:如何让我们在一圈里,沿着四条边去填值?
(1) 上边:从左到右
// i固定不变 = startx
// j从 starty 一直走到 n-offset (不包含 n-offset 本身吗?要看 "<" 还是 "<=")
for (; j < n - offset; j++) {
res[i][j] = count++;
}
- 举例:假设这是第一圈,
startx = starty = 0, offset = 1
,那j < n - offset
就是j < n - 1
,也就是j
最多跑到n-2
,这个和要不要包含右端点可以具体看需要。 - 给每个格子赋值
count
,然后count++
,表示往右填值。
(2) 右边:从上到下
// j 此刻已经停在 (n-offset) 这个列上了
// i从 startx 一直走到 n-offset
for (; i < n - offset; i++) {
res[i][j] = count++;
}
- 当上边走完后,横坐标 i 还是等于
startx
,列 j 已经跑到最右的地方了 (j == n-offset
)。 - 现在我们要沿着最右边那一列,往下走。
(3) 下边:从右到左
// i 此刻停在 (n-offset) 这个行
// 让 j 从 (n-offset) 一直递减到 starty
for (; j > starty; j--) {
res[i][j] = count++;
}
- 右边走完,意味着我们来到了最右下角的位置
(i, j) = (n-offset, n-offset)
。 - 现在要从这个右下角开始,往左走(下边的一行)。
- 往左走时,
j--
,直到走到starty + 1
(因为循环是j > starty
)。
4) 左边:从下到上
// j 此刻已经停在 starty
// i从 (n-offset) 递减到 startx
for (; i > startx; i--) {
res[i][j] = count++;
}
- 下边走完后,我们已经到达
(n-offset, starty)
这个左下角坐标。 - 现在要往上走,
i--
,直到i > startx
。
注意:
- 为什么每个 for 循环条件都是类似
j < n-offset
、j > starty
而不是<=
之类?因为我们要避免重复填充同一个格子,也要考虑索引越界。 - 具体比较细节的界限,可以自己画个图,比如 3x3、4x4,跑一遍,就比较清楚了。
每圈结束后的处理
startx++
,starty++
:表示下一圈的起始位置往内收缩一格。offset++
: 表示右下边界也往内收缩一格。- 这样就能进入下一圈(更里层的螺旋),继续重复类似的四段循环
处理奇数时的中间点
如果 n
是奇数,比如 3, 5, 7……那在完成所有“外层圈”之后,正中心还会剩一个没有被填的格子。
- 比如 n=3 时,最外圈其实就把 8 个格子填完了,中间(1,1)那个格子就剩下,需要单独填。
- 这就是为什么最后有个判断
总结
- 最外层一圈要做四件事:上->右->下->左 依次填数。
- 填完一圈后,把起点坐标“往里挪”,把“右/下边界”也往里收,进入下一圈。
- 当圈数转完,如果是奇数维度,就在中间补一下最后一个元素。
最核心的就是这个流程:
上边 (从左到右) → 右边 (从上到下) → 下边 (从右到左) → 左边 (从下到上)
然后不断往里缩,就可以把 n×n 的二维数组按螺旋方式填满啦。
整体C++代码如下:
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n, vector<int>(n, 0));
int stx = 0, sty = 0;
int cnt = 1, loop = n / 2;
int off = 1;
int i, j;
while(loop --){
i = stx, j = sty;
for(j; j < n - off; j ++) res[i][j] = cnt ++;
for(i; i < n - off; i ++) res[i][j] = cnt ++;
for(; j > stx; j --) res[i][j] = cnt ++;
for(; i > sty; i --) res[i][j] = cnt ++;
stx ++, sty ++;
off += 1;
}
if (n % 2) res[n / 2][n / 2] = cnt;
return res;
}
};
- 时间复杂度 O(n^2): 模拟遍历二维矩阵的时间
- 空间复杂度 O(1)
#类似题目
58. 区间和
题目描述
给定一个整数数组 Array,请计算该数组在每个指定区间内元素的总和。
输入描述
第一行输入为整数数组 Array 的长度 n,接下来 n 行,每行一个整数,表示数组的元素。随后的输入为需要计算总和的区间,直至文件结束。
输出描述
输出每个指定区间内元素的总和。
输入示例
5
1
2
3
4
5
0 1
1 3
输出示例
3
9
数据范围:
0 < n <= 100000
思路
本题我们来讲解 数组 上常用的解题技巧:前缀和
首先来看本题,我们最直观的想法是什么?
那就是给一个区间,然后 把这个区间的和都累加一遍不就得了,是一道简单不能再简单的题目。
代码如下:
#include <iostream>
#include <vector>
using namespace std;
int main() {
int n, a, b;
cin >> n;
vector<int> vec(n);
for (int i = 0; i < n; i++) cin >> vec[i];
while (cin >> a >> b) {
int sum = 0;
// 累加区间 a 到 b 的和
for (int i = a; i <= b; i++) sum += vec[i];
cout << sum << endl;
}
}
代码一提交,发现超时了.....
我在制作本题的时候,特别制作了大数据量查询,卡的就是这种暴力解法。
来举一个极端的例子,如果我查询m次,每次查询的范围都是从0 到 n - 1
那么该算法的时间复杂度是 O(n * m) m 是查询的次数
如果查询次数非常大的话,这个时间复杂度也是非常大的。
接下来我们来引入前缀和,看看前缀和如何解决这个问题。
前缀和的思想是重复利用计算过的子数组之和,从而降低区间查询需要累加计算的次数。
前缀和 在涉及计算区间和的问题时非常有用!
前缀和的思路其实很简单,我给大家举个例子很容易就懂了。
例如,我们要统计 vec[i] 这个数组上的区间和。
我们先做累加,即 p[i] 表示 下标 0 到 i 的 vec[i] 累加 之和。
如图:
如果,我们想统计,在vec数组上 下标 2 到下标 5 之间的累加和,那是不是就用 p[5] - p[1] 就可以了。
为什么呢?
p[1] = vec[0] + vec[1];
p[5] = vec[0] + vec[1] + vec[2] + vec[3] + vec[4] + vec[5];
p[5] - p[1] = vec[2] + vec[3] + vec[4] + vec[5];
这不就是我们要求的 下标 2 到下标 5 之间的累加和吗。
如图所示:
p[5] - p[1]
就是 红色部分的区间和。
而 p 数组是我们之前就计算好的累加和,所以后面每次求区间和的之后 我们只需要 O(1) 的操作。
特别注意: 在使用前缀和求解的时候,要特别注意 求解区间。
如上图,如果我们要求 区间下标 [2, 5] 的区间和,那么应该是 p[5] - p[1],而不是 p[5] - p[2]。
很多录友在使用前缀和的时候,分不清前缀和的区间,建议画一画图,模拟一下 思路会更清晰。
本题C++代码如下:
#include <iostream>
#include <vector>
using namespace std;
int main() {
int n, a, b;
cin >> n;
vector<int> vec(n);
vector<int> p(n);
int presum = 0;
for (int i = 0; i < n; i++) {
cin >> vec[i];
presum += vec[i];
p[i] = presum;
}
while (cin >> a >> b) {
int sum;
if (a == 0) sum = p[b];
else sum = p[b] - p[a - 1];
cout << sum << endl;
}
}
C++ 代码 面对大量数据 读取 输出操作,最好用scanf 和 printf,耗时会小很多:
#include <iostream>
#include <vector>
using namespace std;
int main() {
int n, a, b;
cin >> n;
vector<int> vec(n);
vector<int> p(n);
int presum = 0;
for (int i = 0; i < n; i++) {
scanf("%d", &vec[i]);
presum += vec[i];
p[i] = presum;
}
while (~scanf("%d%d", &a, &b)) {
int sum;
if (a == 0) sum = p[b];
else sum = p[b] - p[a - 1];
printf("%d\n", sum);
}
}
44. 开发商购买土地
【题目描述】
在一个城市区域内,被划分成了n * m个连续的区块,每个区块都拥有不同的权值,代表着其土地价值。目前,有两家开发公司,A 公司和 B 公司,希望购买这个城市区域的土地。
现在,需要将这个城市区域的所有区块分配给 A 公司和 B 公司。
然而,由于城市规划的限制,只允许将区域按横向或纵向划分成两个子区域,而且每个子区域都必须包含一个或多个区块。
为了确保公平竞争,你需要找到一种分配方式,使得 A 公司和 B 公司各自的子区域内的土地总价值之差最小。
注意:区块不可再分。
【输入描述】
第一行输入两个正整数,代表 n 和 m。
接下来的 n 行,每行输出 m 个正整数。
输出描述
请输出一个整数,代表两个子区域内土地总价值之间的最小差距。
【输入示例】
3 3 1 2 3 2 1 3 1 2 3
【输出示例】
0
【提示信息】
如果将区域按照如下方式划分:
1 2 | 3 2 1 | 3 1 2 | 3
两个子区域内土地总价值之间的最小差距可以达到 0。
【数据范围】:
- 1 <= n, m <= 100;
- n 和 m 不同时为 1。
#思路
看到本题,大家如果想暴力求解,应该是 n^3 的时间复杂度,
一个 for 枚举分割线, 嵌套 两个for 去累加区间里的和。
如果本题要求 任何两个行(或者列)之间的数值总和,大家在0058.区间和 的基础上 应该知道怎么求。
就是前缀和的思路,先统计好,前n行的和 q[n],如果要求矩阵 a行 到 b行 之间的总和,那么就 q[b] - q[a - 1]就好。
至于为什么是 a - 1,大家去看 0058.区间和 的分析,使用 前缀和 要注意 区间左右边的开闭情况。
本题也可以使用 前缀和的思路来求解,先将 行方向,和 列方向的和求出来,这样可以方便知道 划分的两个区间的和。
#include <iostream>
#include <vector>
#include <climits>
using namespace std;
int main () {
int n, m;
cin >> n >> m;
int sum = 0;
vector<vector<int>> vec(n, vector<int>(m, 0)) ;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> vec[i][j];
sum += vec[i][j];
}
}
// 统计横向
vector<int> horizontal(n, 0);
for (int i = 0; i < n; i++) {
for (int j = 0 ; j < m; j++) {
horizontal[i] += vec[i][j];
}
}
// 统计纵向
vector<int> vertical(m , 0);
for (int j = 0; j < m; j++) {
for (int i = 0 ; i < n; i++) {
vertical[j] += vec[i][j];
}
}
int result = INT_MAX;
int horizontalCut = 0;
for (int i = 0 ; i < n; i++) {
horizontalCut += horizontal[i];
result = min(result, abs(sum - horizontalCut - horizontalCut));
}
int verticalCut = 0;
for (int j = 0; j < m; j++) {
verticalCut += vertical[j];
result = min(result, abs(sum - verticalCut - verticalCut));
}
cout << result << endl;
}
时间复杂度: O(n^2)
其实本题可以在暴力求解的基础上,优化一下,就不用前缀和了,在行向遍历的时候,遇到行末尾就统一一下, 在列向遍历的时候,遇到列末尾就统计一下。
时间复杂度也是 O(n^2)
代码如下:
#include <iostream>
#include <vector>
#include <climits>
using namespace std;
int main () {
int n, m;
cin >> n >> m;
int sum = 0;
vector<vector<int>> vec(n, vector<int>(m, 0)) ;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> vec[i][j];
sum += vec[i][j];
}
}
int result = INT_MAX;
int count = 0; // 统计遍历过的行
for (int i = 0; i < n; i++) {
for (int j = 0 ; j < m; j++) {
count += vec[i][j];
// 遍历到行末尾时候开始统计
if (j == m - 1) result = min (result, abs(sum - count - count));
}
}
count = 0; // 统计遍历过的列
for (int j = 0; j < m; j++) {
for (int i = 0 ; i < n; i++) {
count += vec[i][j];
// 遍历到列末尾的时候开始统计
if (i == n - 1) result = min (result, abs(sum - count - count));
}
}
cout << result << endl;
}
数组总结篇
#数组理论基础
数组是非常基础的数据结构,在面试中,考察数组的题目一般在思维上都不难,主要是考察对代码的掌控能力
也就是说,想法很简单,但实现起来 可能就不是那么回事了。
首先要知道数组在内存中的存储方式,这样才能真正理解数组相关的面试题
数组是存放在连续内存空间上的相同类型数据的集合。
数组可以方便的通过下标索引的方式获取到下标对应的数据。
举一个字符数组的例子,如图所示:
需要两点注意的是
- 数组下标都是从0开始的。
- 数组内存空间的地址是连续的
正是因为数组在内存空间的地址是连续的,所以我们在删除或者增添元素的时候,就难免要移动其他元素的地址。
例如删除下标为3的元素,需要对下标为3的元素后面的所有元素都要做移动操作,如图所示:
而且大家如果使用C++的话,要注意vector 和 array的区别,vector的底层实现是array,严格来讲vector是容器,不是数组。
数组的元素是不能删的,只能覆盖。
那么二维数组直接上图,大家应该就知道怎么回事了
那么二维数组在内存的空间地址是连续的么?
我们来举一个Java的例子,例如: int[][] rating = new int[3][4];
, 这个二维数组在内存空间可不是一个 3*4
的连续地址空间
看了下图,就应该明白了:
所以Java的二维数组在内存中不是 3*4
的连续地址空间,而是四条连续的地址空间组成!
#数组的经典题目
在面试中,数组是必考的基础数据结构。
其实数组的题目在思想上一般比较简单的,但是如果想高效,并不容易。
我们之前一共讲解了四道经典数组题目,每一道题目都代表一个类型,一种思想。
#二分法
数组:每次遇到二分法,都是一看就会,一写就废(opens new window)
这道题目呢,考察数组的基本操作,思路很简单,但是通过率在简单题里并不高,不要轻敌。
可以使用暴力解法,通过这道题目,如果追求更优的算法,建议试一试用二分法,来解决这道题目
- 暴力解法时间复杂度:O(n)
- 二分法时间复杂度:O(logn)
在这道题目中我们讲到了循环不变量原则,只有在循环中坚持对区间的定义,才能清楚的把握循环中的各种细节。
二分法是算法面试中的常考题,建议通过这道题目,锻炼自己手撕二分的能力。
#双指针法
双指针法(快慢指针法):通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。
- 暴力解法时间复杂度:O(n^2)
- 双指针时间复杂度:O(n)
这道题目迷惑了不少同学,纠结于数组中的元素为什么不能删除,主要是因为以下两点:
- 数组在内存中是连续的地址空间,不能释放单一元素,如果要释放,就是全释放(程序运行结束,回收内存栈空间)。
- C++中vector和array的区别一定要弄清楚,vector的底层实现是array,封装后使用更友好。
双指针法(快慢指针法)在数组和链表的操作中是非常常见的,很多考察数组和链表操作的面试题,都使用双指针法。
#滑动窗口
本题介绍了数组操作中的另一个重要思想:滑动窗口。
- 暴力解法时间复杂度:O(n^2)
- 滑动窗口时间复杂度:O(n)
本题中,主要要理解滑动窗口如何移动 窗口起始位置,达到动态更新窗口大小的,从而得出长度最小的符合条件的长度。
滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。从而将O(n^2)的暴力解法降为O(n)。
如果没有接触过这一类的方法,很难想到类似的解题思路,滑动窗口方法还是很巧妙的。
#模拟行为
模拟类的题目在数组中很常见,不涉及到什么算法,就是单纯的模拟,十分考察大家对代码的掌控能力。
在这道题目中,我们再一次介绍到了循环不变量原则,其实这也是写程序中的重要原则。
相信大家有遇到过这种情况: 感觉题目的边界调节超多,一波接着一波的判断,找边界,拆了东墙补西墙,好不容易运行通过了,代码写的十分冗余,毫无章法,其实真正解决题目的代码都是简洁的,或者有原则性的,大家可以在这道题目中体会到这一点。
#前缀和
代码随想录后续补充题目
前缀和的思路其实很简单,但非常实用,如果没接触过的录友,也很难想到这个解法维度,所以 这是开阔思路 而难度又不高的好题。
#总结
这个图是 代码随想录知识星球 (opens new window)成员:海螺人 (opens new window),所画,总结的非常好,分享给大家。
从二分法到双指针,从滑动窗口到螺旋矩阵,相信如果大家真的认真做了「代码随想录」每日推荐的题目,定会有所收获。
推荐的题目即使大家之前做过了,再读一遍文章,也会帮助你提炼出解题的精髓所在。