Silver Cow Party

本文介绍如何使用Dijkstra算法解决N个农场中每头牛到特定农场参加聚会并返回各自农场所需的最长行走时间问题。通过两次运行Dijkstra算法分别求得前往聚会地点和返回的最短路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow’s return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
思路 本题采用了Dijkstra算法(单源最短路径),首先要清楚最短路径的最优子结构:如果P(i,j)={Vi….Vk..Vs…Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。而Dijkstra算法基于此原理,进行最短路径的递增,并最终生成最短路径。对于原节点,选择与其相邻且路径最短的节点,dist[i] = dist[k] + map[k][i],后面的节点依据这种思路进行递增。
Dijkstra算法参考博客:http://www.cnblogs.com/dolphin0520/archive/2011/08/26/2155202.html

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int MAXN = 1010;
const int INF = 0x3f3f3f3f;
bool visited[MAXN];
void Dijkstra(int map[][MAXN], int dist[], int n, int v0)
{
    for (int i = 1; i <= n; i++)
    {
        dist[i] = INF;
        visited[i] = false;
    }
    dist[v0] = 0;
    for (int j = 0; j<n; j++)
    {
        int k = -1;
        int Min = INF;
        for (int i = 1; i <= n; i++)
            if (!visited[i] && dist[i]<Min)
            {
                Min = dist[i];
                k = i;
            }
        if (k == -1)break;
        visited[k] = true;
        for (int i = 1; i <= n; i++)
            if (!visited[i] && dist[k] + map[k][i]<dist[i])
                dist[i] = dist[k] + map[k][i];
    }
}
int dist1[MAXN];
int dist2[MAXN];
int map[MAXN][MAXN];
int main()
{
    int N, M, X;
    int u, v, w;
    scanf("%d%d%d", &N, &M, &X) == 3; 

    for (int i = 1; i <= N; i++)
        for (int j = 1; j <= N; j++)
        {
            if (i == j)map[i][j] = 0;
            else map[i][j] = INF;
        }
    while (M--)
    {
        scanf("%d%d%d", &u, &v, &w);
        map[u][v] = min(map[u][v], w);
    }
    Dijkstra(map, dist1, N, X);
    for (int i = 1; i <= N; i++)
        for (int j = 1; j<i; j++)
            swap(map[i][j], map[j][i]);
    Dijkstra(map, dist2, N, X);
    int ans = 0;
    for (int i = 1; i <= N; i++)
        ans = max(ans, dist1[i] + dist2[i]);
    printf("%d\n", ans);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值