题目:
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
class Solution {
public:
int maxSubArray(int A[], int n) {
int sum = A[0], res = A[0];
for(int i = 1; i < n; i++) {
sum = sum > 0? sum + A[i] : A[i];
res = max(sum, res);
}
return res;
}
};
本文介绍了一种寻找具有最大和的连续子数组的算法。通过示例[-2,1,-3,4,-1,2,1,-5,4]解释了如何找到最大和子数组[4,-1,2,1],其和为6。提供了O(n)复杂度的解决方案,并探讨了使用分治法的另一种实现方式。
345

被折叠的 条评论
为什么被折叠?



