此题满足动态规划求解条件:1. 最优子结构性质 2. 重叠子问题性质
每个位置可能有三种情况:1. 第一个序列被插入‘_' 2. 第二个序列被插入'_' 3. 两个都不插入,直接匹配
最优值的递归定义为c[i][j] = max(c[i-1][j-1] + arr[sx[i]][sy[j]], c[i][j-1] + arr[4][sy[j]], c[i-1][j] + arr[sx[i]][4])
#include <iostream>
using namespace std;
int max(int a, int b, int c) {
int tmp = a > b? a : b;
return tmp > c ? tmp : c;
}
int main() {
int arr[5][5] = {{5,-1,-2,-1,-3}, {-1,5,-3,-2,-4}, {-2,-3,5,-2,-2}, {-1,-2,-2,5,-1}, {-3,-4,-2,-1,0}};
int num;
cin >> num;
while(num--) {
// sx,sy分别存储两个序列字符对应的下标,c[i][j]存储最优值
int sx[101], sy[101], c[101][101] = {0};
char ch;
int len1, len2;
cin >> len1;
for(int i = 1; i <= len1; i++) {
cin >> ch;
switch(ch) { //将第i个字符转换成数组下标
case 'A' : sx[i] = 0; break;
case 'C' : sx[i] = 1; break;
case 'G' : sx[i] = 2; break;
case 'T' : sx[i] = 3; break;
}
}
cin >> len2;
for(int i = 1; i <= len2; i++) {
cin >> ch;
switch(ch) {
case 'A' : sy[i] = 0; break;
case 'C' : sy[i] = 1; break;
case 'G' : sy[i] = 2; break;
case 'T' : sy[i] = 3; break;
}
}
for(int i = 1; i <= len1; i++)
c[i][0] = c[i-1][0] + arr[sx[i]][4];
for(int j = 1; j <= len2; j++)
c[0][j] = c[0][j-1] + arr[4][sy[j]];
for(int i = 1; i <= len1; i++) {
for(int j = 1; j<= len2; j++)
c[i][j] = max(c[i-1][j-1] + arr[sx[i]][sy[j]], c[i][j-1] + arr[4][sy[j]], c[i-1][j] + arr[sx[i]][4]);
}
cout << c[len1][len2] << endl;
}
return 0;
}