朴素贝叶斯分类Python演示

本文详细介绍了朴素贝叶斯分类器的工作原理及其在实际应用中的构建过程。通过具体的步骤展示如何使用训练数据集来估计概率并进行分类预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
 
'''
朴素贝叶斯分类器的原理
 
事件H的先验概率P(H),即无条件概率
事件H在X发生时的后验概率P(H|X)
 
这里面H通常是指某一个分类
X是指样本事件
P(H|X)就表示在样本X发生的情况下,分类H的概率
假设有N个分类H1到HN,那么P(Hi|X)最大的分类就是我们要找的,假设是Hk
因为在X发生的情况下,Hk发生的概率最大
 
P(H|X) = [P(X|H)*P(H)]/P(X)
 
分类器的构造
条件如下
1.每个元组有N个属性 X = {x1 , x2 , ... , xn},分别对应属性{A1 ... An},并且属性之间相互独立
2.当前有M个训练元组,并且知道它们的分类标号
3.一共有K个分类C1 ... Ck,并且知道每个分类的先验概率,如果不知道则拟定其为1/K
 
问题是
对于任意给定的新的元组Xgive,确定其分类Cget,使得P(Cget|Xgive)最大(相对于其它分类)
 
解析
P(Ci|X) = [P(X|Ci)*P(Ci)]/P(X)
对于所有的分类{C},P(X)是不变的(其实是未知的),为了使P(Ci|X)最大,
只需要使P(X|Ci)*P(Ci)最大
如果P(Ci)取1/K,则只要使P(X|Ci)最大
由于X = {x1 , x2 , ... , xn},分别对应属性{A1 ... An},并且各个属性之间没有关联
则P(X|Ci)*P(Ci) = P(x1|Ci)*P(x2|Ci)*...*P(xn|Ci) * P(Ci)
 
P(xi|Ci)由训练元组得到
分为两种情况
如果Ai为离散值,则P(xi|Ci)等于【属于Ci的训练元组中,Ai=xi的元组个数】/【属于Ci的元组总数】
如果Ai为连续值,则假定Ci中的Ai服从高斯分布,计算出高斯分布的参数,分别为平均值和标准差
P(xi|Ci)等于xi处的概率密度
 
'''
 
 
'''
问题一:训练元组从何而来?
 
'''
 
#加载训练数据
#文件格式:属性标号,是否连续【yes|no】,属性说明
attribute_file_dest = 'F:\\bayes_categorize\\attribute.dat'
attribute_file = open(attribute_file_dest)
 
#文件格式:rec_id,attr1_value,attr2_value,...,attrn_value,class_id
trainning_data_file_dest = 'F:\\bayes_categorize\\trainning_data.dat'
trainning_data_file = open(trainning_data_file_dest)
 
#文件格式:class_id,class_desc
class_desc_file_dest = 'F:\\bayes_categorize\\class_desc.dat'
class_desc_file = open(class_desc_file_dest)
 
 
attr_dict = {}
for line in attribute_file :
    line = line.strip()
    fld_list = line.split(',')
    attr_dict[int(fld_list[0])] = tuple(fld_list[1:])
 
class_dict = {}
for line in class_desc_file :
    line = line.strip()
    fld_list = line.split(',')
    class_dict[int(fld_list[0])] = fld_list[1]
    
trainning_data_dict = {}
class_member_set_dict = {}
for line in trainning_data_file :
    line = line.strip()
    fld_list = line.split(',')
    rec_id = int(fld_list[0])
    a1 = int(fld_list[1])
    a2 = int(fld_list[2])
    a3 = float(fld_list[3])
    c_id = int(fld_list[4])
    
    if c_id not in class_member_set_dict :
        class_member_set_dict[c_id] = set()
    class_member_set_dict[c_id].add(rec_id)
    trainning_data_dict[rec_id] = (a1 , a2 , a3)
    
attribute_file.close()
class_desc_file.close()
trainning_data_file.close()
 
class_possibility_dict = {}
for c_id in class_member_set_dict :
    class_possibility_dict[c_id] = (len(class_member_set_dict[c_id]) + 0.0)/len(trainning_data_dict)    
 
#等待分类的数据
data_to_classify_file_dest = 'F:\\bayes_categorize\\trainning_data_new.dat'
data_to_classify_file = open(data_to_classify_file_dest)
data_to_classify_dict = {}
for line in data_to_classify_file :
    line = line.strip()
    fld_list = line.split(',')
    rec_id = int(fld_list[0])
    a1 = int(fld_list[1])
    a2 = int(fld_list[2])
    a3 = float(fld_list[3])
    c_id = int(fld_list[4])
    data_to_classify_dict[rec_id] = (a1 , a2 , a3 , c_id)
data_to_classify_file.close()
 
 
diff_cnt = 0
#对于每一个待分类元组,对于每一个分类计算P(X|Ci)*P(Ci),寻找取得最大值的分类
for rec_id in data_to_classify_dict :
    
    res_class_id = 0
    max_P_X_Ci = 0.0
    a1_x1 = data_to_classify_dict[rec_id][0]
    a2_x2 = data_to_classify_dict[rec_id][1]
    a3_x3 = data_to_classify_dict[rec_id][2]
    for c_id in class_possibility_dict :
        P_Ci = class_possibility_dict[c_id]
        #求P_x1_Ci
        cnt_Ci = len(class_member_set_dict[c_id])
        cnt_x1_Ci = len([tmp_rec_id for tmp_rec_id in trainning_data_dict \
        if trainning_data_dict[tmp_rec_id][0] == a1_x1 and tmp_rec_id in class_member_set_dict[c_id]])
        P_x1_Ci = (cnt_x1_Ci + 0.0) / cnt_Ci
        #求P_x2_Ci
        cnt_Ci = len(class_member_set_dict[c_id])
        cnt_x2_Ci = len([tmp_rec_id for tmp_rec_id in trainning_data_dict \
        if trainning_data_dict[tmp_rec_id][1] == a2_x2 and tmp_rec_id in class_member_set_dict[c_id]])
        P_x2_Ci = (cnt_x2_Ci + 0.0) / cnt_Ci
        #求P_x3_Ci
        #按正态分布处理,取标准差和平均值
        a3_data = [ trainning_data_dict[tmp_rec_id][2] for tmp_rec_id in trainning_data_dict \
        if tmp_rec_id in class_member_set_dict[c_id] ]
        a3_std_err = np.sqrt(np.var(a3_data))
        a3_mean = np.mean(a3_data)
        P_x3_Ci = mlab.normpdf(a3_x3 , a3_mean , a3_std_err )
        
        res = P_x1_Ci * P_x2_Ci * P_x3_Ci * P_Ci
        if res > max_P_X_Ci :
            max_P_X_Ci = res
            res_class_id = c_id
        
    if res_class_id == 0 :
        print 'error 2'
    
    if res_class_id != data_to_classify_dict[rec_id][3] :
        print 'different'
        print res_class_id
        print data_to_classify_dict[rec_id]
        diff_cnt += 1
 
print diff_cnt        
        
        
产生测试数据的脚本:
# -*- coding: utf-8 -*-
import numpy as np
from random import random as rdn
 
#attr : a1 离【1 -- 10 】, a2 离【1 -- 10 】, a3 连【1 -- 100】正态分布
 
#class : c1 , c2 , c3 , c4 , c5 , c6 , c7 , c8
 
#data : 1 - 1000
 
'''
c1 : a1[1 - 3] a2[4 - 10] a3[<= 50]
c2 : a1[1 - 3] a2[4 - 10] a3[> 50]
c3 : a1[1 - 3] a2[1 - 3] a3[> 30]
c4 : a1[1 - 3] a2[1 - 3] a3[<= 30]
c5 : a1[4 - 10] a2[4 - 10] a3[<= 50]
c6 : a1[4 - 10] a2[4 - 10] a3[> 50]
c7 : a1[4 - 10] a2[1 - 3] a3[> 30]
c8 : a1[4 - 10] a2[1 - 3] a3[<= 30]
'''
 
 
data_file = open('F:\\bayes_categorize\\trainning_data_new.dat' , 'w')
a3_data = np.random.randn(1000 ) * 30 + 50
 
for i in range(1 , 1001 ) :
    rec_id = i
    a1 = int(rdn()*10) + 1
    if a1 > 10 :
        a1 = 10
        
    a2 = int(rdn()*10) + 1
    if a2 > 10 :
        a2 = 10
       
    a3 = a3_data[i-1]
    
    c_id = 0
    if a1 <= 3 and a2 >= 4 and a3 <= 50 :
        c_id = 1
    elif a1 <= 3 and a2 >= 4 and a3 > 50 :
        c_id = 2
    elif a1 <= 3 and a2 < 4 and a3 > 30 :
        c_id = 3
    elif a1 <= 3 and a2 < 4 and a3 <= 30 :
        c_id = 4
    elif a1 > 3 and a2 >= 4 and a3 <= 50 :
        c_id = 5
    elif a1 > 3 and a2 >= 4 and a3 > 50 :
        c_id = 6
    elif a1 > 3 and a2 < 4 and a3 > 30 :
        c_id = 7
    elif a1 > 3 and a2 < 4 and a3 <= 30 :
        c_id = 8
    else :
        print 'error'
        
    str_line = str(rec_id) + ',' + str(a1) + ',' + str(a2) + ','  + str(a3) + ',' + str(c_id) + '\n'
    data_file.write(str_line)
data_file.close()
 
配置文件:
1,no,
2,no,
3,yes,


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值