1.为什么大模型推理时显存涨的那么多还一直占着?
大语言模型进行推理时,显存涨得很多且一直占着显存不释放的原因主要有以下几点:
- 模型参数占用显存:大语言模型通常具有巨大的参数量,这些参数需要存储在显存中以供推理使用。因此,在推理过程中,模型参数会占用相当大的显存空间。
- 输入数据占用显存:进行推理时,需要将输入数据加载到显存中。对于大语言模型而言,输入数据通常也会占用较大的显存空间,尤其是对于较长的文本输入。
- 中间计算结果占用显存:在推理过程中,模型会进行一系列的计算操作,生成中间结果。这些中间结果也需要存储在显存中,以便后续计算使用。对于大语言模型而言,中间计算结果可能会占用较多的显存空间。
- 内存管理策略:某些深度学习框架在推理时采用了一种延迟释放显存的策略,即显存不会立即释放,而是保留一段时间以备后续使用。这种策略可以减少显存的分配和释放频率,提高推理效率,但也会导致显存一直占用的现象。
需要注意的是,显存的占用情况可能会受到硬件设备、深度学习框架和模型实现的影响。不同的环境和设置可能会导致显存占用的差异。如果显存占用过多导致资源不足或性能下降,可以考虑调整模型的批量大小、优化显存分配策略或使用更高性能的硬件设备来解决问题。
2.大模型在GPU和CPU上推理速度如何?
大语言模型在GPU和CPU上进行推理的速度存在显著差异。一般情况下,GPU在进行深度学习推理任务时具有更高的计算性能
订阅专栏 解锁全文
1118

被折叠的 条评论
为什么被折叠?



