
machine learning
文章平均质量分 93
艳艳儿
这个作者很懒,什么都没留下…
展开
-
[Machine Learning] SVM--support vector machine
Linear classifier1 Separable situationi SVM modelii Algorithm2 Un-separable situationi SVM modelii AlgorithmNonlinear classifier1 SVM model via kernel function2 SMO Algorithm1. Linear classif原创 2016-01-07 07:17:26 · 2027 阅读 · 0 评论 -
[Machine Learning] Generative learning algorithm-GDA and NB
Generative v DiscriminantGenerative learning algorithmTwo generative learning algorithm1 Gaussian discriminant analysis11 Core assumption of DGA12 GDA V logistic2 Naive Bayes21 Core assumption o原创 2016-01-06 03:00:19 · 722 阅读 · 0 评论 -
[Machine Learning] Neural Network
Neural NetworkCentral idea about neural networkUnderstanding of neural networkBack-Propagation algorithmNeural NetworkCentral idea about neural networkIn general, neural network is just a semi-param原创 2015-12-24 13:31:22 · 777 阅读 · 0 评论 -
[Machine Learning] Random Forest
Random ForestRandom Forest一Review of random forest二Models random forest can be used(一)Review of random forestFirstly, I give a review of two main ensemble algorithm: bagging and boosting:bagging bui原创 2015-12-13 01:13:53 · 1029 阅读 · 0 评论 -
Python 100练习题[1-10]
1.. 有四个数字:1、2、3、4,能组成多少个互不相同且无重复数字的三位数?各是多少?import itertoolsdef permutation12341(): result0= list(itertools.permutations('1234', 3)) result1 = [''.join(i) for i in result0] result2 = [int(i原创 2016-12-28 15:22:48 · 1400 阅读 · 0 评论 -
[Machine Learning] XGBoost
1. XGBoost介绍XGBoost模型即是一些“串联”树结构的组合,最终预测结果由多棵树共同决定。 模型公式:y=f(z)=∑Kk=1fk(z)y=f(z)=∑k=1Kfk(z)y=f(z)=\sum_{k=1}^K f_k(z) 模型预测:y^i=∑Kk=1f^k(xi)y^i=∑k=1Kf^k(xi)\hat y_i = \sum_{k=1}^K \hat f_k(x_i...原创 2018-03-20 17:03:21 · 396 阅读 · 0 评论 -
[code] Chap 10 for ESL
Figure 10.2Firstly define the function to generate simulated data.# function for generating data for figure 10.2gen_eq_10_2_data <- function(N = 2000, p = 10){ X <- matrix( rnorm(N*p), ...原创 2018-12-13 22:25:40 · 377 阅读 · 0 评论